Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Development ; 146(5)2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858200

RESUMO

We review here some of the historical highlights in exploratory studies of the vertebrate embryonic structure known as the neural crest. The study of the molecular properties of the cells that it produces, their migratory capacities and plasticity, and the still-growing list of tissues that depend on their presence for form and function, continue to enrich our understanding of congenital malformations, paediatric cancers and evolutionary biology. Developmental biology has been key to our understanding of the neural crest, starting with the early days of experimental embryology and through to today, when increasingly powerful technologies contribute to further insight into this fascinating vertebrate cell population.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/fisiologia , Animais , Evolução Biológica , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Embrião de Galinha , Coturnix , Biologia do Desenvolvimento , Predisposição Genética para Doença , Humanos , Neoplasias/metabolismo
3.
Dev Biol ; 442(2): 249-261, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30071216

RESUMO

The development of the sensory nervous system is the result of fine-tuned waves of neurogenesis and apoptosis which control the appropriate number of precursors and newly generated neurons and orient them toward a specific lineage. Neurotrophins and their tyrosine-kinase receptors (RTK) orchestrate this process. They have long been in the scope of the neurotrophic theory which established that a neuron is committed to die unless a trophic factor generated by its target provides it with a survival signal. The neural death has thus always been described as a "default" program, survival being the major player to control the number of cells. New insights have been brought by the gain of function studies which recently demonstrated that TrkC (NTRK3) is a "dependence receptor" able to actively trigger apoptosis in absence of its ligand NT-3. In order to address the role of TrkC pro-apoptotic activity in the control of sensory neurons number, we generated a TrkC gene-trap mutant mice. We found out that this new murine model recapitulates the sensory phenotype of TrkC constitutive mutants, with reduced DRG size and reduced number of DRG neurons. We engineered these mice strain with a lacZ reporter in order to follow the fate of neurons committed to a TrkC lineage and observed that they are specifically protected from NT-3 mediated apoptosis in NT-3/TrkC double knock-out embryos. Finally, using a chicken model we demonstrated that silencing NT-3 emanating from the ventral neural tube induced apoptosis in the DRG anlage. This apoptosis was inhibited by silencing TrkC. This work thus demonstrates that, during in vivo DRG development, TrkC behaves as a two-sided receptor transducing positive signals of neuronal survival in response to NT-3, but actively inducing neuronal cell death when unbound. This functional duality sets adequate number of neurons committed to a TrkC identity in the forming DRG.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Receptor trkC/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Embrião de Galinha , Feminino , Gânglios Espinais/embriologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo
4.
Dev Biol ; 444 Suppl 1: S3-S13, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30048640

RESUMO

FOREWORD: The neural crest has been the main object of my investigations during my career in science, up to now. It is a fascinating topic for an embryologist because of its two unique characteristics: its large degree of multipotency and the fact that its development involves a phase during which its component cells migrate all over the embryo and settle in elected sites where they differentiate into a large variety of cell types. Thus, neural crest development raises several specific questions that are at the same time, of general interest: what are the mechanisms controlling the migratory behavior of the cells that detach from the neural plate borders? What are the migration routes taken by the neural crest cells and the environmental factors that make these cells stop in elected sites where they differentiate into a definite series of cell types? When I started to be interested in the neural crest, in the late 1960s, this embryonic structure was the subject of investigations of only a small number of developmental biologists. Fifty years later, it has become the center of interest of many laboratories over the world. The 150th anniversary of its discovery is a relevant opportunity to consider the progress that has been accomplished in our knowledge on the development of this ubiquitous structure, the roles it plays in the physiology of the organism through its numerous and widespread derivatives and its relationships with its environment, as well as the evolutionary advantages it has conferred to the vertebrate phylum. I wish to thank Pr Marianne Bronner, Chief Editor of Developmental Biology and Special Issue Guest Editor, for dedicating a special issue of this journal to this particular structure of the vertebrate embryo. In the following pages, Elisabeth Dupin and I will report some of the highlights of our own acquaintance with the neural crest of the avian embryo, after retracing the main trends of the discoveries of the historical pioneers.


Assuntos
Crista Neural/citologia , Crista Neural/metabolismo , Crista Neural/fisiologia , Animais , Evolução Biológica , Padronização Corporal , Diferenciação Celular/fisiologia , Movimento Celular , Embrião de Galinha , Melanócitos/citologia , Placa Neural/fisiologia , Neurogênese/fisiologia , Codorniz , Vertebrados
5.
Dev Biol ; 444 Suppl 1: S47-S59, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29614271

RESUMO

In the neural primordium of vertebrate embryos, the neural crest (NC) displays a unique character: the capacity of its component cells to leave the neural primordium, migrate along definite (and, for long, not identified) routes in the developing embryo and invade virtually all tissues and organs, while producing a large array of differentiated cell types. The most striking diversity of the NC derivatives is found in its cephalic domain that produces, not only melanocytes and peripheral nerves and ganglia, but also various mesenchymal derivatives (connective tissues, bones, cartilages…) which, in other parts of the body, are mesoderm-derived. The aim of this article was to review the large amount of work that has been devoted to solving the problem of the differentiation capacities of individual NC cells (NCC) arising from both the cephalic and trunk levels of the neural axis. A variety of experimental designs applied to NCC either in vivo or in vitro are evaluated, including the possibility to culture them in crestospheres, a technique previously designed for cells of the CNS, and which reinforces the notion, previously put forward, of the existence of NC stem cells. At the trunk level, the developmental potentialities of the NCC are more restricted than in their cephalic counterparts, but, in addition to the neural-melanocytic fate that they exclusively express in vivo, it was clearly shown that they harbor mesenchymal capacities that can be revealed in vitro. Finally, a large amount of evidence has been obtained that, during the migration process, most of the NCC are multipotent with a variable array of potentialities among the cells considered. Investigations carried out in adults have shown that multipotent NC stem cells persist in the various sites of the body occupied by NCC. Enlightening new developments concerning the invasive capacity of NCC, the growing peripheral nerves were revealed as migration routes for NCC travelling to distant ventrolateral regions of the body. Designated "Schwann cell precursors" in the mouse embryo, these NCC can leave the nerves and are able to convert to a novel fate. The convertibility of the NC-derived cells, particularly evident in the Schwann cell-melanocyte lineage transition, has also been demonstrated for neuroendocrine cells of the adult carotid body and for the differentiation of parasympathetic neurons of ganglia distant from their origin, the NC. All these new developments attest the vitality of the research on the NC, a field that characterizes vertebrate development and for which the interest has constantly increased during the last decades.


Assuntos
Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Crista Neural/fisiologia , Animais , Evolução Biológica , Padronização Corporal , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Sistema Nervoso Central/fisiologia , Desenvolvimento Embrionário , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Melanócitos/citologia , Mesoderma , Crista Neural/metabolismo , Placa Neural/fisiologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Células de Schwann , Vertebrados
6.
PLoS One ; 12(11): e0188398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149196

RESUMO

Epithelial and stromal stem cells are required to maintain corneal transparency. The aim of the study was to develop a new method to isolate and grow both corneal stromal (SSC) and epithelial limbal (LSC) stem cells from small human limbal biopsies under culture conditions in accordance with safety requirements mandatory for clinical use in humans. Superficial limbal explants were retrieved from human donor corneo-scleral rims. Human limbal cells were dissociated by digestion with collagenase A, either after epithelial scraping or with no scraping. Isolated cells were cultured with Essential 8 medium (E8), E8 supplemented with EGF (E8+) or Green's medium with 3T3 feeder-layers. Cells were characterized by immunostaining, RT-qPCR, colony forming efficiency, sphere formation, population doubling, second harmonic generation microscopy and differentiation potentials. LSC were obtained from unscraped explants in E8, E8+ and Green's media and were characterized by colony formation and expression of PAX6, ΔNP63α, Bmi1, ABCG2, SOX9, CK14, CK15 and vimentin, with a few cells positive for CK3. LSC underwent 28 population doublings still forming colonies. SSC were obtained from both scraped and unscraped explants in E8 and E8+ media and were characterized by sphere formation, expression of PAX6, SOX2, BMI1, NESTIN, ABCG2, KERATOCAN, VIMENTIN, SOX9, SOX10 and HNK1, production of collagen fibrils and differentiation into keratocytes, fibroblasts, myofibroblasts, neurons, adipocytes, chondrocytes and osteocytes. SSC underwent 48 population doublings still forming spheres, Thus, this new method allows both SSC and LSC to be isolated from small superficial limbal biopsies and to be primary cultured in feeder-free and xeno-free conditions, which will be useful for clinical purposes.


Assuntos
Separação Celular/métodos , Substância Própria/citologia , Células Epiteliais/citologia , Epitélio Corneano/citologia , Limbo da Córnea/citologia , Células-Tronco/citologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Substância Própria/efeitos dos fármacos , Substância Própria/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Limbo da Córnea/efeitos dos fármacos , Limbo da Córnea/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Nestina/genética , Nestina/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Cultura Primária de Células , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
7.
BMC Dev Biol ; 17(1): 13, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017464

RESUMO

BACKGROUND: Vertebrate head development depends on a series of interactions between many cell populations of distinct embryological origins. Cranial mesenchymal tissues have a dual embryonic source: - the neural crest (NC), which generates most of craniofacial skeleton, dermis, pericytes, fat cells, and tenocytes; and - the mesoderm, which yields muscles, blood vessel endothelia and some posterior cranial bones. The molecular players that orchestrate co-development of cephalic NC and mesodermal cells to properly construct the head of vertebrates remain poorly understood. In this regard, Six1 gene, a vertebrate homolog of Drosophila Sine Oculis, is known to be required for development of ear, nose, tongue and cranial skeleton. However, the embryonic origin and fate of Six1-expressing cells have remained unclear. In this work, we addressed these issues in the avian embryo model by using quail-chick chimeras, cephalic NC cultures and immunostaining for SIX1. RESULTS: Our data show that, at early NC migration stages, SIX1 is expressed by mesodermal cells but excluded from the NC cells (NCC). Then, SIX1 becomes widely expressed in NCC that colonize the pre-otic mesenchyme. In contrast, in the branchial arches (BAs), SIX1 is present only in mesodermal cells that give rise to jaw muscles. At later developmental stages, the distribution of SIX1-expressing cells in mesoderm-derived tissues is consistent with a possible role of this factor in the myogenic program of all types of head muscles, including pharyngeal, extraocular and tongue muscles. In NC derivatives, SIX1 is notably expressed in perichondrium and chondrocytes of the nasal septum and in the sclera, although other facial cartilages such as Meckel's were negative at the stages considered. Moreover, in cephalic NC cultures, chondrocytes and myofibroblasts, not the neural and melanocytic cells express SIX1. CONCLUSION: The present results point to a dynamic tissue-specific expression of SIX1 in a variety of cephalic NC- and mesoderm-derived cell types and tissues, opening the way for further analysis of Six1 function in the coordinated development of these two cellular populations during vertebrate head formation.


Assuntos
Embrião não Mamífero/embriologia , Crista Neural/embriologia , Animais , Mesoderma/embriologia , Codorniz/embriologia
8.
Curr Top Dev Biol ; 116: 659-78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26970647

RESUMO

The neural crest (NC) is, in the Chordate phylum, an innovation of vertebrates, which exhibits several original characteristics: its component cells are pluripotent and give rise to both ectodermal and mesodermal cell types. Moreover, during the early stages of neurogenesis, the NC cells exert a paracrine stimulating effect on the development of the preotic brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Diferenciação Celular , Crista Neural/crescimento & desenvolvimento , Neurogênese/fisiologia , Células-Tronco Pluripotentes/citologia , Vertebrados/crescimento & desenvolvimento , Animais
9.
Birth Defects Res C Embryo Today ; 102(3): 187-209, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25219958

RESUMO

In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals.


Assuntos
Crista Neural/citologia , Crista Neural/embriologia , Vertebrados/embriologia , Animais , Evolução Biológica , Encéfalo/embriologia , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Coração/embriologia , Células-Tronco/metabolismo
10.
Neuron ; 81(3): 505-20, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24507188

RESUMO

We present a method to label and trace the lineage of multiple neural progenitors simultaneously in vertebrate animals via multiaddressable genome-integrative color (MAGIC) markers. We achieve permanent expression of combinatorial labels from new Brainbow transgenes introduced in embryonic neural progenitors with electroporation of transposon vectors. In the mouse forebrain and chicken spinal cord, this approach allows us to track neural progenitor's descent during pre- and postnatal neurogenesis or perinatal gliogenesis in long-term experiments. Color labels delineate cytoarchitecture, resolve spatially intermixed clones, and specify the lineage of astroglial subtypes and adult neural stem cells. Combining colors and subcellular locations provides an expanded marker palette to individualize clones. We show that this approach is also applicable to modulate specific signaling pathways in a mosaic manner while color-coding the status of individual cells regarding induced molecular perturbations. This method opens new avenues for clonal and functional analysis in varied experimental models and contexts.


Assuntos
Encéfalo/citologia , Linhagem da Célula/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Medula Espinal/citologia , Células-Tronco/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Embrião de Galinha , Colorimetria , Eletroporação , Embrião de Mamíferos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Neurogênese/fisiologia , Medula Espinal/embriologia , Células-Tronco/citologia , Fatores de Tempo , Transposases/fisiologia
11.
Dev Biol ; 384(1): 13-25, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24099925

RESUMO

The neural crest (NC), an ectoderm-derived structure of the vertebrate embryo, gives rise to the melanocytes, most of the peripheral nervous system and the craniofacial mesenchymal tissues (i.e., connective, bone, cartilage and fat cells). In the trunk of Amniotes, no mesenchymal tissues are derived from the NC. In certain in vitro conditions however, avian and murine trunk NC cells (TNCCs) displayed a limited mesenchymal differentiation capacity. Whether this capacity originates from committed precursors or from multipotent TNCCs was unknown. Here, we further investigated the potential of TNCCs to develop into mesenchymal cell types in vitro. We found that, in fact, quail TNCCs exhibit a high ability to differentiate into myofibroblasts, chondrocytes, lipid-laden adipocytes and mineralizing osteoblasts. In single cell cultures, both mesenchymal and neural cell types coexisted in TNCC clonal progeny: 78% of single cells yielded osteoblasts together with glial cells and neurons; moreover, TNCCs generated heterogenous clones with adipocytes, myofibroblasts, melanocytes and/or glial cells. Therefore, alike cephalic NCCs, early migratory TNCCs comprised multipotent progenitors able to generate both mesenchymal and melanocytic/neural derivatives, suggesting a continuum in NC developmental potentials along the neural axis. The skeletogenic capacity of the TNC, which was present in the exoskeletal armor of the extinct basal forms of Vertebrates and which persisted in the distal fin rays of extant teleost fish, thus did not totally disappear during vertebrate evolution. Mesenchymal potentials of the TNC, although not fulfilled during development, are still present in a dormant state in Amniotes and can be disclosed in in vitro culture. Whether these potentials are not expressed in vivo due to the presence of inhibitory cues or to the lack of permissive factors in the trunk environment remains to be understood.


Assuntos
Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Codorniz/metabolismo , Células 3T3 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células Alimentadoras/citologia , Interação Gene-Ambiente , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Multipotentes/metabolismo , Crista Neural/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Codorniz/embriologia
12.
Mol Cell ; 51(5): 632-46, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034695

RESUMO

The neurotrophin receptor TrkC was recently identified as a dependence receptor, and, as such, it triggers apoptosis in the absence of its ligand, NT-3. The molecular mechanism for apoptotic engagement involves the double cleavage of the receptor's intracellular domain, leading to the formation of a proapoptotic "killer" fragment (TrkC KF). Here, we show that TrkC KF interacts with Cobra1, a putative cofactor of BRCA1, and that Cobra1 is required for TrkC-induced apoptosis. We also show that, in the developing chick neural tube, NT-3 silencing is associated with neuroepithelial cell death that is rescued by Cobra1 silencing. Cobra1 shuttles TrkC KF to the mitochondria, where it promotes Bax activation, cytochrome c release, and apoptosome-dependent apoptosis. Thus, we propose that, in the absence of NT-3, the proteolytic cleavage of TrkC leads to the release of a killer fragment that triggers mitochondria-dependent apoptosis via the recruitment of Cobra1.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Receptor trkC/metabolismo , Animais , Embrião de Galinha/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Neurotrofina 3/metabolismo , Neurotrofina 3/farmacologia , Proteínas Nucleares/genética , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a RNA , Receptor trkC/genética , Proteína X Associada a bcl-2/metabolismo
13.
Cytometry A ; 83(1): 38-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22837061

RESUMO

A wide array of neural and non-neural cell types arises from the neural crest during vertebrate embryogenesis. The neural crest forms transiently in the dorsal neural primordium to yield migratory cells that will invade nearly all tissues and later, differentiate into bones and cartilages, vascular smooth muscle cells, connective tissues, neurons and glial cells of the peripheral nervous system, endocrine cells, and melanocytes. Due to the amazingly diversified array of cell types they generate, the neural crest cells represent an attractive model in the stem cell field. We review here in vivo and in vitro studies of individual cells, which led to the discovery and characterization of neural crest progenitors endowed with multipotency and stem cell properties. We also present an overview of the diverse types, marker expression, and locations of the neural crest-derived stem cells identified in the vertebrate body, with emphasis on those evidenced recently in mammalian adult tissues.


Assuntos
Diferenciação Celular/fisiologia , Crista Neural/citologia , Células-Tronco Neurais/citologia , Animais , Movimento Celular/fisiologia , Separação Celular/métodos , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos
14.
Curr Opin Genet Dev ; 22(4): 381-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22770944

RESUMO

Vertebrates belong to the group of chordates characterized by a dorsal neural tube and an anteroposterior axis, the notochord. They are the only chordates to possess an embryonic and pluripotent structure associated with their neural primordium, the neural crest (NC). The NC is at the origin of multiple cell types and plays a major role in the construction of the head, which has been an important asset in the evolutionary success of vertebrates. We discuss here the contribution of the rostral domain of the NC to craniofacial skeletogenesis. Moreover, recent data show that cephalic NC cells regulate the activity of secondary brain organizers, hence being critical for preotic brain development, a role that had not been suspected before.


Assuntos
Evolução Biológica , Crista Neural , Vertebrados/embriologia , Animais , Padronização Corporal , Linhagem da Célula , Humanos , Crista Neural/citologia
15.
Dev Biol ; 366(1): 83-95, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22425619

RESUMO

In the vertebrate embryo, the neural crest forms transiently in the dorsal neural primordium to yield migratory cells that will invade nearly all tissues and later, will differentiate into bones and cartilages, neurons and glia, endocrine cells, vascular smooth muscle cells and melanocytes. Due to the amazingly diversified array of cell types it produces, the neural crest is an attractive model system in the stem cell field. We present here in vivo and in vitro studies of single cell fate, which led to the discovery and the characterization of stem cells in the neural crest of avian and mammalian embryos. Some of the key issues in neural crest cell diversification are discussed, such as the time of segregation of mesenchymal vs. neural/melanocytic lineages, and the origin and close relationships between the glial and melanocytic lineages. An overview is also provided of the diverse types of neural crest-like stem cells and progenitors, recently identified in a growing number of adult tissues in animals and humans. Current and future work, in which in vivo lineage studies and the use of injury models will complement the in vitro culture analysis, should help in unraveling the properties and function of neural crest-derived progenitors in development and disease.


Assuntos
Diferenciação Celular , Crista Neural , Células-Tronco/citologia , Células-Tronco Adultas/citologia , Animais , Células da Medula Óssea/citologia , Linhagem da Célula , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Humanos , Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Crista Neural/embriologia , Pele/citologia
16.
Dev Biol ; 361(2): 208-19, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22057081

RESUMO

Epithelial-mesenchymal interactions are crucial for the development of the endoderm of the pharyngeal pouches into the epithelia of thymus and parathyroid glands. Here we investigated the dynamics of epithelial-mesenchymal interactions that take place at the earliest stages of thymic and parathyroid organogenesis using the quail-chick model together with a co-culture system capable of reproducing these early events in vitro. The presumptive territories of thymus and parathyroid epithelia were identified in three-dimensionally preserved pharyngeal endoderm of embryonic day 4.5 chick embryos on the basis of the expression of Foxn1 and Gcm2, respectively: the thymic rudiment is located in the dorsal domain of the third and fourth pouches, while the parathyroid rudiment occupies a more medial/anterior pouch domain. Using in vitro quail-chick tissue associations combined with in ovo transplantations, we show that the somatopleural but not the limb bud mesenchyme, can mimic the role of neural crest-derived pharyngeal mesenchyme to sustain development of these glands up to terminal differentiation. Furthermore, mesenchymal-derived Bmp4 appears to be essential to promote early stages of endoderm development during a short window of time, irrespective of the mesenchymal source. In vivo studies using the quail-chick system and implantation of growth factor soaked-beads further showed that expression of Bmp4 by the mesenchyme is necessary during a 24 h-period of time. After this period however, Bmp4 is no longer required and another signalling factor produced by the mesenchyme, Fgf10, influences later differentiation of the pouch endoderm. These results show that morphological development and cell differentiation of thymus and parathyroid epithelia require a succession of signals emanating from the associated mesenchyme, among which Bmp4 plays a pivotal role for triggering thymic epithelium specification.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Embrião não Mamífero/metabolismo , Epitélio/embriologia , Mesoderma/embriologia , Glândulas Paratireoides/embriologia , Transdução de Sinais , Timo/embriologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Proteína Morfogenética Óssea 4/genética , Proteínas de Transporte/farmacologia , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Endoderma/embriologia , Endoderma/metabolismo , Endoderma/transplante , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Fator 10 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Organogênese/efeitos dos fármacos , Organogênese/genética , Glândulas Paratireoides/efeitos dos fármacos , Glândulas Paratireoides/metabolismo , Codorniz/embriologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Timo/efeitos dos fármacos , Timo/metabolismo , Fatores de Tempo
17.
Biol Aujourdhui ; 205(1): 53-61, 2011.
Artigo em Francês | MEDLINE | ID: mdl-21501576

RESUMO

Melanocytes, the pigmented cells of the skin, and the glial Schwann cells lining peripheral nerves are developmentally derived from an early and transient ectodermal structure of the vertebrate embryo, the neural crest, which is also at the origin of multiple neural and non-neural cell types. Besides melanocytes and neural cells of the peripheral nervous system, the neural crest cells give rise to mesenchymal cell types in the head, which form most of the craniofacial skeleton, dermis, fat tissue and vascular musculo-connective components. How such a wide diversity of differentiation fates is established during embryogenesis and is later maintained in adult tissues are among key questions in developmental and stem cell biology. The analysis of the developmental potentials of single neural crest cells cultured in vitro led to characterizing multipotent stem/progenitor cells as well as more restricted precursors in the early neural crest of avian and mammalian embryos. Data support a hierarchical model of the diversification of neural crest lineages through progressive restrictions of multipotent stem cell potentials driven by local environmental factors. In particular, melanocytes and glial Schwann cells were shown to arise from a common bipotent progenitor, which depends upon the peptide endothelin-3 for proliferation and self-renewal ability. In vivo, signaling by endothelin-3 and its receptor is also required for the early development of melanocytes and proper pigmentation of the vertebrate body. It is generally assumed that, after lineage specification and terminal differentiation, specialized cell types, like the melanocytes and Schwann cells, do not change their identity. However, this classic notion that somatic cell differentiation is a stable and irreversible process has been challenged by emerging evidence that dedifferentiation can occur in different biological systems through nuclear transfer, cell fusion, epigenetic modifications and ectopic gene expression. This review considers the issue of whether neural crest-derived lineages are endowed with some phenotypic plasticity. Emphasis is put on the ability of pigment cells and Schwann cells to dedifferentiate and reprogram their fate in vitro. To address this question, we have studied the clonal progeny of differentiated Schwann cells and melanocytes after their isolation from the sciatic nerve and the back skin of quail embryos, respectively. When stimulated to proliferate in vitro in the presence of endothelin-3, both cell types were able to dedifferentiate and produce alternative neural crest-derived cell lineages. Individual Schwann cells isolated by FACS, using a glial-specific surface marker, gave rise in culture to pigment cells and myofibroblasts/smooth muscle cells. Treatment of the cultures with endothelin-3 was required for Schwann cell conversion into melanocytes, which involved acquisition of multipotency. Moreover, Schwann cell plasticity could also be induced in vivo: following transplantation into the branchial arch of a young chick host embryo, dedifferentiating Schwann cells were able to integrate the forming head structures of the host and, specifically, to contribute smooth muscle cells to the wall of cranial blood vessels. We also analyzed the in vitro behavior of individual pigment cells obtained by microdissection and enzymatic treatment of quail epidermis at embryonic and hatching stages. In single cell cultures treated with endothelin-3, pigment cells strongly proliferated while rapidly dedifferentiating into unpigmented cells, leading to the formation of large colonies that comprised glial cells and myofibroblasts in addition to melanocytes. By serially subcloning these primary colonies, we could efficiently propagate a bipotent glial-melanocytic precursor that is generated in the progeny of the melanocytic founder. These data therefore suggest that pigment cells have the ability to revert back to the state of self-renewing neural crest-like progenitors. Altogether, these studies have shown that Schwann cells and pigment cells display an unstable status of differentiation, which can be disclosed if these differentiated cells are displaced out of their native tissue. When challenged with new environmental conditions in vitro, differentiated Schwann cells and pigment cells can reacquire stem cell properties of their neural crest ancestors. Notably, such reprogramming was achieved through the effect of a single exogenous factor and without the need of any induced genetic modification. Deciphering the cellular and molecular mechanisms that regulate the plasticity and maintenance of neural crest-derived differentiated cells is likely to be an important step towards the understanding of the neurocristopathies and cancers that target neural crest derivatives in humans.


Assuntos
Diferenciação Celular , Melanócitos/citologia , Fenótipo , Células de Schwann/citologia , Animais , Desenvolvimento Embrionário , Endotelina-3 , Meio Ambiente , Humanos , Crista Neural/citologia , Células-Tronco/citologia
18.
Cell Cycle ; 9(2): 238-49, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20037475

RESUMO

In the amniote embryo, the neural crest (NC) has the unique capacity to give rise to neuronal and glial cells in the peripheral nervous system (PNS), melanocytes and mesenchymal cells including those forming the head skeleton and connective tissues. In the trunk, mesenchymal cells are derived from the mesoderm. The question was raised whether the NC-derived head mesenchyme arises from a lineage separate from the neural-melanocytic one, or if both skeletogenic and neural-melanocytic derivatives originate from a common putative stem cell in the early cephalic NC. We discuss here these issues and present experimental data that provide evidence for the multipotency of NC cells (NCC), focusing on those at the origin of the craniofacial skeleton. Recent work of in vitro clonal culture revealed that the vast majority (92% of clonogenic cells) of the cephalic quail NCC are capable to yield osteoblasts together with neurones, glial cells and melanocytes. A common pluripotent progenitor for chondrocytes, osteocytes, neurones, glial cells, melanocytes and myofibroblasts has been identified and is present in the early cephalic NC at the frequency of 7 to 13% of clonogenic cells depending on the environmental conditions. Together with recent reports that multipotent NC-related progenitors persist in adult tissues in rodents and humans, these results reinforce a stem cell model for the generation and maintenance of NC-derived lineages during embryogenesis and in adult tissue homeostasis.


Assuntos
Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Animais , Diferenciação Celular , Condrócitos/citologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Desenvolvimento Embrionário , Proteínas Hedgehog/metabolismo , Melanócitos/citologia , Células-Tronco Multipotentes/metabolismo , Crista Neural/metabolismo , Neuroglia/citologia , Neurônios/citologia , Osteoblastos/citologia , Vertebrados/embriologia
19.
Proc Natl Acad Sci U S A ; 106(22): 8947-52, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19447928

RESUMO

The neural crest (NC) is a vertebrate innovation that distinguishes vertebrates from other chordates and was critical for the development and evolution of a "New Head and Brain." In early vertebrates, the NC was the source of dermal armor of fossil jawless fish. In extant vertebrates, including mammals, the NC forms the peripheral nervous system, melanocytes, and the cartilage and bone of the face. Here, we show that in avian embryos, a large majority of cephalic NC cells (CNCCs) have the ability to differentiate into cell types as diverse as neurons, melanocytes, osteocytes, and chondrocytes. Moreover, we find that the morphogen Sonic hedgehog (Shh) acts on CNCCs to increase endochondral osteogenesis while having no effect on osteoblasts prone to membranous ossification. We have developed culture conditions that demonstrate that "neural-mesenchymal" differentiation abilities are present in more than 90% of CNCCs. A highly multipotent progenitor (able to yield neurons, glia, melanocytes, myofibroblasts, chondrocytes, and osteocytes) comprises 7-13% of the clonogenic cells in the absence and presence of Shh, respectively. This progenitor is a good candidate for a cephalic NC stem cell.


Assuntos
Encéfalo/citologia , Melanócitos/citologia , Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Neurogênese , Osteogênese , Animais , Encéfalo/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Proteínas Oncogênicas/genética , Codorniz , Transativadores/genética , Proteína GLI1 em Dedos de Zinco
20.
Cell Cycle ; 7(8): 1013-9, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18414040

RESUMO

In the vertebrate embryo, the neurectodermal neural crest cells (NCC) have remarkably broad potencies, giving rise, after a migratory phase, to neurons and glial cells in the peripheral nervous system, and to skin melanocytes, being all designated here as "neural" derivatives. NC-derived cells also include non-neural, "mesenchymal" cell types like chondrocytes and bone cells, myofibroblasts and adipocytes, which largely contribute to the head structures in amniotes. Similar to the blood cell system, the NC is therefore a valuable model to investigate the mechanisms of cell lineage diversification in vertebrates. Whether NCC are endowed with multiple differentiation potentials or if, conversely, they are a mosaic of different committed cells is an important ongoing issue to understand the ontogeny of NC derivatives in normal development and pathological conditions. Here we focus on recent findings that established the presence in the early migratory NC of the avian embryo, of a multipotent progenitor endowed with both mesenchymal and neural differentiation capacities. This "mesenchymal-neural" clonogenic cell lies upstream of all the other NC progenitors known so far and shows increased frequency when single cell cultures are treated with the Sonic Hedgehog signaling molecule. These findings are discussed in the context of the broad potentials of NC stem cells recently evidenced in certain adult mammalian tissues.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Mesoderma/embriologia , Sistema Nervoso/embriologia , Crista Neural/citologia , Vertebrados/embriologia , Animais , Proteínas Hedgehog/metabolismo , Mesoderma/citologia , Sistema Nervoso/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...