Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 90(5): 2170-2193, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28317121

RESUMO

In this study, an anadromous strain (L) and a freshwater-resident (R) strain of brook charr Salvelinus fontinalis as well as their reciprocal hybrids, were reared in a common environment and submitted to swimming tests combined with salinity challenges. The critical swimming speeds (Ucrit ) of the different crosses were measured in both fresh (FW) and salt water (SW) and the variations in several physiological traits (osmotic, energetic and metabolic capacities) that are predicted to influence swimming performance were documented. Anadromous and resident fish reached the same Ucrit in both FW and SW, with Ucrit being 14% lower in SW compared with FW. The strains, however, seemed to use different underlying strategies: the anadromous strain relied on its streamlined body shape and higher osmoregulatory capacity, while the resident strain had greater citrate synthase (FW) and lactate dehydrogenase (FW, SW) capacity and either greater initial stores or more efficient use of liver (FW, SW) and muscle (FW) glycogen during exercise. Compared with R♀ L♂ hybrids, L♀ R♂ hybrids had a 20% lower swimming speed, which was associated with a 24% smaller cardio-somatic index and higher physiological costs. Thus swimming performance depends on cross direction (i.e. which parental line was used as dam or sire). The study thus suggests that divergent physiological factors between anadromous and resident S. fontinalis may result in similar swimming capacities that are adapted to their respective lifestyles.


Assuntos
Migração Animal/fisiologia , Natação/fisiologia , Truta/fisiologia , Animais
2.
J Exp Biol ; 213(Pt 7): 1143-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20228351

RESUMO

The specific growth rate (SGR) of a cohort of 2000 tagged juvenile European sea bass was measured in a common tank, during two sequential cycles comprising three-weeks feed deprivation followed by three-weeks ad libitum re-feeding. After correction for initial size at age as fork length, there was a direct correlation between negative SGR (rate of mass loss) during feed deprivation and positive SGR (rate of compensatory growth) during re-feeding (Spearman rank correlation R=0.388, P=0.000002). Following a period of rearing under standard culture conditions, individuals representing 'high growth' phenotypes (GP) and 'high tolerance of feed deprivation' phenotypes (DP) were selected from either end of the SGR spectrum. Static and swimming respirometry could not demonstrate lower routine or standard metabolic rate in DP to account for greater tolerance of feed deprivation. Increased rates of compensatory growth in GP were not linked to greater maximum metabolic rate, aerobic metabolic scope or maximum cardiac performance than DP. When fed a standard ration, however, GP completed the specific dynamic action (SDA) response significantly faster than DP. Therefore, higher growth rate in GP was linked to greater capacity to process food. There was no difference in SDA coefficient, an indicator of energetic efficiency. The results indicate that individual variation in growth rate in sea bass reflects, in part, a trade-off against tolerance of food deprivation. The two phenotypes represented the opposing ends of a spectrum. The GP aims to exploit available resources and grow as rapidly as possible but at a cost of physiological and/or behavioural attributes, which lead to increased energy dissipation when food is not available. An opposing strategy, exemplified by DP, is less 'boom and bust', with a lower physiological capacity to exploit resources but which is less costly to sustain during periods of food deprivation.


Assuntos
Adaptação Fisiológica , Bass/crescimento & desenvolvimento , Bass/fisiologia , Privação de Alimentos/fisiologia , Análise de Variância , Animais , Metabolismo Basal/fisiologia , Europa (Continente) , Comportamento Alimentar/fisiologia , Feminino , Coração/fisiologia , Masculino , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal
3.
Artigo em Inglês | MEDLINE | ID: mdl-19559805

RESUMO

Previous studies have shown that if European sea bass are exercised after feeding, they can achieve a significantly higher maximum metabolic rate (MMR) than when fasted. They can meet combined metabolic demands of digestion (specific dynamic action, SDA) and maximal aerobic exercise, with no decline in swimming performance. If, however, exposed to mild hypoxia (50% saturation), bass no longer achieve higher MMR after feeding but they swim as well fed as fasted, due to an apparent ability to defer the SDA response. This study explored patterns of cardiac output (Q(A)) and blood flow to the gastrointestinal tract (Q(GI)) associated with the higher MMR after feeding, and with the ability to prioritise swimming in hypoxia. Sea bass (mean mass approximately 325 g, forklength approximately 27 cm) were instrumented with flow probes to measure Q(A) and Q(GI) during an incremental critical swimming speed (U(crit)) protocol in a tunnel respirometer, to compare each animal either fasted or 6h after a meal of fish fillet equal to 3% body mass. Feeding raised oxygen uptake (M(O2)) prior to exercise, an SDA response associated with increased Q(A) (+30%) and Q(GI) (+100%) compared to fasted values. As expected, when exercised the fed bass maintained the SDA load throughout the protocol and achieved 14% higher MMR than when fasted, and the same U(crit) (approximately 100 cm s(-1)). Both fed and fasted bass showed pronounced increases in Q(A) and decreases in Q(GI) during exercise and the higher MMR of fed bass was not associated with higher maximum Q(A) relative to when fasted, or to any differences in Q(GI) at maximum Q(A). In hypoxia prior to exercise, metabolic and cardiac responses to feeding were similar compared to normoxia. Hypoxia caused an almost 60% reduction to MMR and 30% reduction to U(crit), but neither of these traits differed between fed or fasted bass. Despite hypoxic limitations to MMR and U(crit), maximum Q(A) and patterns of Q(GI) during exercise in fasted and fed bass were similar to normoxia. Estimating GI oxygen supply from Q(GI) indicated that the ability of bass to prioritise aerobic exercise over SDA when metabolically limited by hypoxia was linked to an ability to defer elements of the SDA response occurring outside the GI tract.


Assuntos
Bass/fisiologia , Metabolismo Energético/fisiologia , Trato Gastrointestinal/irrigação sanguínea , Hemodinâmica/fisiologia , Oxigênio/fisiologia , Esforço Físico/fisiologia , Animais , Débito Cardíaco/fisiologia , Proteínas Alimentares/administração & dosagem , Digestão/fisiologia , Ingestão de Alimentos/fisiologia , Feminino , Privação de Alimentos/fisiologia , Frequência Cardíaca/fisiologia , Masculino , Consumo de Oxigênio/fisiologia , Fluxo Sanguíneo Regional , Volume Sistólico/fisiologia , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...