Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(2): 409-421, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31851517

RESUMO

The present work is an extensive laboratory study of organosulfate (OS) formation from the reaction of α-pinene oxidation products or proxies with acidified ammonium sulfate aerosols in three different acidity conditions ((NH4)2SO4 0.06 M; (NH4)2SO4/H2SO4 0.06 M/0.005 M; (NH4)2SO4/H2SO4 0.03 M/0.05 M). The kinetics of the reactions of α-pinene, α-pinene oxide, isopinocampheol, pinanediol, and myrtenal with ammonium sulfate particles were studied using a quasi-static reactor. The reaction of α-pinene oxide with the highly acidic ammonium sulfate particles was determined to be 7, 10, 21, and 24 times faster than for isopinocampheol, α-pinene, pinanedial, and myrtenal, respectively, for an OS precursor concentration of 1 ppm and after 1 h reaction time. The effective rate coefficients for OS formation from α-pinene oxide were determined to be 2 orders of magnitude higher in highly acidic conditions than for the two other acidity conditions. For α-pinene oxide reactions with highly acidic ammonium sulfate particles, OS formation was observed to increase linearly with (i) the time of reaction up to 400 min (r2 > 0.95) and (ii) α-pinene oxide gas-phase concentration. However, OS formation from α-pinene oxide reactions with slightly acidic or pure ammonium sulfate particles was limited, with a plateau ([OS]max = 0.62 ± 0.03 µg) reached after around 15-20 min. Organosulfate dimers (m/z 401 and m/z 481) were detected not only with highly acidic particles but also with slightly acidic and pure ammonium sulfate particles, indicating that oligomerization processes do not require strong acidity conditions. Dehydration products of organosulfates (m/z 231 and m/z 383) were observed only under highly acidic conditions, indicating the key role of H2SO4 on the dehydration of organosulfates and the formation of olefins in the atmosphere. Finally, this kinetic study was completed with simulation chamber experiments in which the mass concentration of organosulfates was shown to depend on the available sulfate amount present in the particle phase (r2 = 0.96). In conclusion, this relative comparison between five organosulfate precursors shows that epoxide was the most efficient reactant to form organosulfates via heterogeneous gas-particle reactions and illustrates how gas-particle reactions may play an important role in OS formation and hence in the atmospheric fate of organic carbon. The kinetic data presented in this work provide strong support to organosulfate formation mechanisms proposed in part 1 ( J. Phys. Chem. A 2016 , 120 , 7909 - 7923 ).

2.
J Phys Chem A ; 120(40): 7909-7923, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27611844

RESUMO

In the present study, quasi-static reactor and atmospheric simulation chamber experiments were performed to investigate the formation of α-pinene-derived organosulfates. Organosulfates (R-OSO3H) were examined for the reactions between acidified ammonium sulfate particles exposed to an individual gaseous volatile organic compound, such as α-pinene and oxidized products (α-pinene oxide, isopinocampheol, pinanediol and myrtenal). Molecular structures were elucidated by liquid chromatography interfaced to high-resolution quadrupole time-of-flight mass spectrometry equipped with electrospray ionization (LC/ESI-HR-QTOFMS). New organosulfate products were detected and identified for the first time in the present study. Reaction with α-pinene oxide was found to be a favored pathway for organosulfate formation (C10H18O5S) and to yield organosulfate dimers (C20H34O6S and C20H34O9S2) and trimers (C30H50O10S2) under dry conditions (RH < 1%) and high particle acidity and precursor concentrations (1 ppm). The role of relative humidity on organosulfate formation yields and product distribution was specifically examined. Organosulfate concentrations were found to decrease with increasing relative humidity. Mechanistic pathways for organosulfate formation from the reactions between α-pinene, α-pinene oxide, isopinocampheol, or pinanediol with acidified ammonium sulfate particles are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...