Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 6(22): 4218-26, 2000 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-11128287

RESUMO

Four novel calix[6]arene-based cuprous complexes are described. They present a biomimetic tris(imidazole) coordination core associated with a hydrophobic cavity that wraps the apical binding site. Each differs from the other by the methyl or ethyl substituents present on the phenoxyl groups (OR1) and on the imidazole arms (NR2) of the calix[6]arene structure. In solution, stable CO complexes were obtained. We have investigated their geometrical and dynamic properties with respect to the steric demand. IR and NMR studies revealed that, in solution, these complexes adopted two distinct conformations. The preferred conformation was dictated only by the size of the OR1 group. When R1 was an ethyl group, the complex preferentially adopted a flattened C3-symmetrical structure. The corresponding helical enantiomers were in conformational equilibrium, which, however, was slow on the 1H NMR time scale at -80 degrees C. When R1 was a methyl group, the low-temperature NMR spectra revealed the partial inclusion of one tBu group. The complex wobbled between three dissymmetric but equivalent conformations. Hence, small differences in the steric demand of the calixarene's skeleton changed the geometry and dynamics of the system. Indeed, this supramolecular control was promoted by the strong conformational coupling between the metal center and the host structure. Interestingly, this was not only the result of a covalent preorganization, but also stemmed from weak interactions within the hydrophobic pocket. The vibrational spectra of the bound CO were revealed to be a sensitive gauge of this supramolecular behavior, similar to copper proteins in which allosteric effects are common.


Assuntos
Monóxido de Carbono/química , Cobre/química , Mimetismo Molecular , Espectroscopia de Ressonância Magnética , Conformação Molecular , Prótons , Temperatura
2.
J Chem Inf Comput Sci ; 38(4): 586-94, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9691473

RESUMO

The prediction of properties of molecules from their structure (QSAR) is basically a nonlinear regression problem. Neural networks are proven to be parsimonious universal approximators of nonlinear functions; therefore, they are excellent candidates for performing the nonlinear regression tasks involved in QSAR. However, their full potential can be exploited only in the framework of a rigorous approach. In the present paper, we describe a principled methodology for designing neural networks for QSAR and estimating their performances, and we apply this approach to the prediction of logP. We compare our results to those obtained on the same molecules by other methods.


Assuntos
Redes Neurais de Computação , Relação Estrutura-Atividade , Algoritmos , Biometria , Bases de Dados Factuais , Dinâmica não Linear , Análise de Regressão
3.
Biochemistry ; 34(8): 2634-44, 1995 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-7873545

RESUMO

In either sperm whale or horse heart myoglobin, binding of NO and lowering of solution pH work together to weaken, and ultimately break, the bond between iron and the proximal histidine. This is reminiscent of the reaction observed at neutral pH in the case of guanylate cyclase, the heme enzyme that catalyzes the conversion of GTP to cGMP. Bond breaking is characterized by a spectral change from a nine-line to a three-line ESR signal and accompanied by a shift from 420 to 387 nm in the UV-vis spectrum of the Soret band maximum. Analysis of the pH-dependent spectral changes shows that they are reversible, at least within a few hours, that the transition is cooperative, involving six protons during pH lowering but only two as it is raised, and that the pK is about 4.7. Different proteins exhibit different pK values, which are generally lower than that for "chelated" protoheme. The pK differences reflect the extra bond stability afforded by the protein structure. Investigations of thermal and photochemical NO displacement by CO suggest that the local pocket around the ligand, although significantly altered (according to circular dichroism investigations), nonetheless still imposes a barrier against the outward diffusion of ligand into the solvent. Nanosecond and picosecond flash photolysis shows that in proteins at low pH there is an extremely efficient geminate recombination of the ligand with the four-coordinated species through a single-exponential process. This occurs to a significantly larger extent than for the case of NO-"chelated" protoheme (where no distal barrier for ligand is present). At neutral pH, when the proximal histidine bond is intact, the geminate recombination for NO takes longer and displays multiexponential kinetics. Altogether, these results suggest that, even though distal effects probably also play a role, proximal effects make an important contribution in modulating ligand-iron bond formation.


Assuntos
Mioglobina/química , Mioglobina/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Animais , Sítios de Ligação , Dicroísmo Circular , Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Heme/química , Cavalos , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Estrutura Molecular , Miocárdio/metabolismo , Espectrofotometria , Baleias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...