Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0133805, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225423

RESUMO

Antibacterial drugs with novel scaffolds and new mechanisms of action are desperately needed to address the growing problem of antibiotic resistance. The periplasmic oxidative folding system in Gram-negative bacteria represents a possible target for anti-virulence antibacterials. By targeting virulence rather than viability, development of resistance and side effects (through killing host native microbiota) might be minimized. Here, we undertook the design of peptidomimetic inhibitors targeting the interaction between the two key enzymes of oxidative folding, DsbA and DsbB, with the ultimate goal of preventing virulence factor assembly. Structures of DsbB--or peptides--complexed with DsbA revealed key interactions with the DsbA active site cysteine, and with a hydrophobic groove adjacent to the active site. The present work aimed to discover peptidomimetics that target the hydrophobic groove to generate non-covalent DsbA inhibitors. The previously reported structure of a Proteus mirabilis DsbA active site cysteine mutant, in a non-covalent complex with the heptapeptide PWATCDS, was used as an in silico template for virtual screening of a peptidomimetic fragment library. The highest scoring fragment compound and nine derivatives were synthesized and evaluated for DsbA binding and inhibition. These experiments discovered peptidomimetic fragments with inhibitory activity at millimolar concentrations. Although only weakly potent relative to larger covalent peptide inhibitors that interact through the active site cysteine, these fragments offer new opportunities as templates to build non-covalent inhibitors. The results suggest that non-covalent peptidomimetics may need to interact with sites beyond the hydrophobic groove in order to produce potent DsbA inhibitors.


Assuntos
Proteínas de Bactérias/metabolismo , Oxirredutases/metabolismo , Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Tolueno/análogos & derivados , Domínio Catalítico/efeitos dos fármacos , Cisteína/metabolismo , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/metabolismo , Tolueno/metabolismo , Virulência/efeitos dos fármacos , Fatores de Virulência/metabolismo
2.
J Med Chem ; 58(2): 577-87, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25470204

RESUMO

One approach to address antibiotic resistance is to develop drugs that interfere with bacterial virulence. A master regulator of virulence in Gram-negative bacteria is the oxidative folding machinery comprising DsbA and DsbB. A crystal structure at 2.5 Å resolution is reported here for Escherichia coli DsbA complexed with PFATCDS, a heptapeptide derived from the partner protein Escherichia coli DsbB. Details of the peptide binding mode and binding site provide valuable clues for inhibitor design. Structure-activity relationships for 30 analogues were used to produce short peptides with a cysteine that bind tightly to EcDsbA (Kd = 2.0 ± 0.3 µM) and inhibit its activity (IC50 = 5.1 ± 1.1 µM). The most potent inhibitor does not bind to or inhibit human thioredoxin that shares a similar active site. This finding suggests that small molecule inhibitors can be designed to exploit a key interaction of EcDsbA, as the basis for antivirulence agents with a novel mechanism of action.


Assuntos
Proteínas de Escherichia coli/antagonistas & inibidores , Peptídeos/farmacologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/química , Oxirredução , Isomerases de Dissulfetos de Proteínas/química , Relação Estrutura-Atividade , Virulência
3.
J Biol Chem ; 289(29): 19869-80, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24860094

RESUMO

The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Humanos , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletricidade Estática , Termodinâmica
4.
J Biol Chem ; 289(28): 19810-22, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24831013

RESUMO

The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery.


Assuntos
Proteínas de Bactérias/química , Dissulfetos/química , Isomerases de Dissulfetos de Proteínas/química , Proteus mirabilis/enzimologia , Motivos de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Ligantes , Relação Estrutura-Atividade
5.
PLoS One ; 8(11): e80210, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244651

RESUMO

Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA). Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA) shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA). As expected, the redox properties, structure and surface features (from crystal and NMR data) of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class.


Assuntos
Sequência Conservada , Proteínas de Escherichia coli/química , Klebsiella pneumoniae/química , Modelos Moleculares , Isomerases de Dissulfetos de Proteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Dados de Sequência Molecular , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Salmonella typhimurium/química , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 1981-94, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100317

RESUMO

The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited substrate-binding specificity.


Assuntos
Antígenos de Bactérias/química , Glutationa Transferase/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , NADH NADPH Oxirredutases/química , Fragmentos de Peptídeos/química , Vitamina K Epóxido Redutases/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/toxicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Glutationa Transferase/genética , Humanos , Macrófagos/enzimologia , Macrófagos/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mycobacterium tuberculosis/genética , Oxirredução , Fragmentos de Peptídeos/genética , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína/genética , Vitamina K Epóxido Redutases/genética
7.
J Biol Chem ; 287(49): 40996-1006, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23055524

RESUMO

The APPL1 and APPL2 proteins (APPL (adaptor protein, phosphotyrosine interaction, pleckstrin homology (PH) domain, and leucine zipper-containing protein)) are localized to their own endosomal subcompartment and interact with a wide range of proteins and small molecules at the cell surface and in the nucleus. They play important roles in signal transduction through their ability to act as Rab effectors. (Rabs are a family of Ras GTPases involved in membrane trafficking.) Both APPL1 and APPL2 comprise an N-terminal membrane-curving BAR (Bin-amphiphysin-Rvs) domain linked to a PH domain and a C-terminal phosphotyrosine-binding domain. The structure and interactions of APPL1 are well characterized, but little is known about APPL2. Here, we report the crystal structure and low resolution solution structure of the BARPH domains of APPL2. We identify a previously undetected hinge site for rotation between the two domains and speculate that this motion may regulate APPL2 functions. We also identified Rab binding partners of APPL2 and show that these differ from those of APPL1, suggesting that APPL-Rab interaction partners have co-evolved over time. Isothermal titration calorimetry data reveal the interaction between APPL2 and Rab31 has a K(d) of 140 nM. Together with other biophysical data, we conclude the stoichiometry of the complex is 2:2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Membrana Celular/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria/métodos , Núcleo Celular/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X/métodos , Dimerização , GTP Fosfo-Hidrolases/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Fosfatidilinositóis/química , Mapeamento de Interação de Proteínas/métodos , Estrutura Terciária de Proteína , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Solventes/química , Eletricidade Estática , Propriedades de Superfície , Raios X , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...