Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 376(6590): 283-287, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271301

RESUMO

On 14 August 2021, the moment magnitude (Mw) 7.2 Nippes earthquake in Haiti occurred within the same fault zone as its devastating 2010 Mw 7.0 predecessor, but struck the country when field access was limited by insecurity and conventional seismometers from the national network were inoperative. A network of citizen seismometers installed in 2019 provided near-field data critical to rapidly understand the mechanism of the mainshock and monitor its aftershock sequence. Their real-time data defined two aftershock clusters that coincide with two areas of coseismic slip derived from inversions of conventional seismological and geodetic data. Machine learning applied to data from the citizen seismometer closest to the mainshock allows us to forecast aftershocks as accurately as with the network-derived catalog. This shows the utility of citizen science contributing to our understanding of a major earthquake.

2.
Geophys Res Lett ; 48(7): e2020GL091757, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34219839

RESUMO

Earthquakes preceding large events are commonly referred to as foreshocks. They are often considered as precursory phenomena reflecting the nucleation process of the main rupture. Such foreshock sequences may also be explained by cascades of triggered events. Recent advances in earthquake detection motivates a reevaluation of seismicity variations prior to mainshocks. Based on a highly complete earthquake catalog, previous studies suggested that mainshocks in Southern California are often preceded by anomalously elevated seismicity. In this study, we test the same catalog against the Epidemic Type Aftershock Sequence model that accounts for temporal clustering due to earthquake interactions. We find that 10/53 mainshocks are preceded by a significantly elevated seismic activity compared with our model. This shows that anomalous foreshock activity is relatively uncommon when tested against a model of earthquake interactions. Accounting for the recurrence of anomalies over time, only 3/10 mainshocks present a mainshock-specific anomaly with a high predictive power.

3.
Geophys Res Lett ; 46(10): 5207-5216, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31598017

RESUMO

On 12 November 2017, a M W=7.3 earthquake struck near the Iranian town of Ezgeleh, at the Iran-Iraq border. This event was located within the Zagros fold and thrust belt which delimits the continental collision between the Arabian and Eurasian Plates. Despite a high seismic risk, the seismogenic behavior of the complex network of active faults is not well documented in this area due to the long recurrence interval of large earthquakes. In this study, we jointly invert interferometric synthetic aperture radar and near-field strong motions to infer a kinematic slip model of the rupture. The incorporation of these near-field observations enables a fine resolution of the kinematic rupture process. It reveals an impulsive seismic source with a strong southward rupture directivity, consistent with significant damage south of the epicenter. We also show that the slip direction does not match plate convergence, implying that some of the accumulated strain must be partitioned onto other faults.

4.
Geophys Res Lett ; 46(1): 119-127, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31423032

RESUMO

Volcano-tectonic seismicity has been recorded for decades on various volcanoes and is linked with the magma transport and reservoir pressurization. Yet earthquakes often appear broadly distributed such that magma movement is difficult to infer from its analysis. We explore the seismicity that occurred before eruptions at Piton de la Fournaise in the last 5 years. Using template matching and relocation techniques, we produce a refined image of the summit seismicity, demonstrating that most earthquakes are located on a ring structure. However, only a portion of this structure is activated before each eruption, which provides an indication as to the direction of the future eruptive site. Furthermore, we show that the delay between the pre-eruptive swarm and the eruption onset is proportional to the distance of the eruptive fissures relative to the summit cone. This reveals that the beginning of the intrusion already bears information regarding the future eruption location.

5.
Geophys Res Lett ; 45(22): 12263-12273, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31007305

RESUMO

We detected a long-term transient deformation signal between 2014 and 2016 in the Atacama region (Chile) using survey Global Positioning System (GPS) observations. Over an ∼150 km along-strike region, survey GPS measurements in 2014 and 2016 deviate significantly from the interseismic trend estimated using previous observations. This deviation from steady state deformation is spatially coherent and reveals a horizontal westward diverging motion of several centimeters, along with a significant uplift. It is confirmed by continuous measurements of recently installed GPS stations. We discard instrumental, hydrological, oceanic, or atmospheric loading effects and show that the transient is likely due to deep slow slip in the transition zone of the subduction interface (∼40- to 60-km depth). In addition, daily observations recorded by a continuous GPS station operating between 2002 and 2015 highlight similar transient signals in 2005 and 2009, suggesting a recurrent pattern.

6.
Science ; 337(6095): 724-6, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22821986

RESUMO

Seismological observations of the 2012 moment magnitude 8.6 Sumatra earthquake reveal unprecedented complexity of dynamic rupture. The surprisingly large magnitude results from the combination of deep extent, high stress drop, and rupture of multiple faults. Back-projection source imaging indicates that the rupture occurred on distinct planes in an orthogonal conjugate fault system, with relatively slow rupture speed. The east-southeast-west-northwest ruptures add a new dimension to the seismotectonics of the Wharton Basin, which was previously thought to be controlled by north-south strike-slip faulting. The rupture turned twice into the compressive quadrant, against the preferred branching direction predicted by dynamic Coulomb stress calculations. Orthogonal faulting and compressional branching indicate that rupture was controlled by a pressure-insensitive strength of the deep oceanic lithosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...