Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(7): 1419-1427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789884

RESUMO

PURPOSE: Segmenting ultrasound images is important for precise area and/or volume calculations, ensuring reliable diagnosis and effective treatment evaluation for diseases. Recently, many segmentation methods have been proposed and shown impressive performance. However, currently, there is no deeper understanding of how networks segment target regions or how they define the boundaries. In this paper, we present a new approach that analyzes ultrasound segmentation networks in terms of learned borders because border delimitation is challenging in ultrasound. METHODS: We propose a way to split the boundaries for ultrasound images into distinct and completed. By exploiting the Grad-CAM of the split borders, we analyze the areas each network pays attention to. Further, we calculate the ratio of correct predictions for distinct and completed borders. We conducted experiments on an in-house leg ultrasound dataset (LEG-3D-US) as well as on two additional public datasets of thyroid, nerves, and one private for prostate. RESULTS: Quantitatively, the networks exhibit around 10% improvement in handling completed borders compared to distinct borders. Similar to doctors, the network struggles to define the borders in less visible areas. Additionally, the Seg-Grad-CAM analysis underscores how completion uses distinct borders and landmarks, while distinct focuses mainly on the shiny structures. We also observe variations depending on the attention mechanism of each architecture. CONCLUSION: In this work, we highlight the importance of studying ultrasound borders differently than other modalities such as MRI or CT. We split the borders into distinct and completed, similar to clinicians, and show the quality of the network-learned information for these two types of borders. Additionally, we open-source a 3D leg ultrasound dataset to the community https://github.com/Al3xand1a/segmentation-border-analysis .


Assuntos
Ultrassonografia , Humanos , Ultrassonografia/métodos , Masculino , Glândula Tireoide/diagnóstico por imagem , Próstata/diagnóstico por imagem , Perna (Membro)/diagnóstico por imagem , Imageamento Tridimensional/métodos
2.
IEEE Trans Med Imaging ; 40(10): 2615-2628, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33560982

RESUMO

We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Músculos , Tomografia Computadorizada por Raios X , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...