Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromodulation ; 25(5): 680-692, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35131153

RESUMO

OBJECTIVES: The effect of lead placement and programming strategies on spinal cord stimulation (SCS) therapy has been widely studied; however, there is a need to optimize these parameters to favor dorsal column (DC) over dorsal root (DR) stimulation in complex pain treatment. This study aimed to determine the optimal lateral distance between two leads and the effect of transverse stimulation using a mathematical model. MATERIALS AND METHODS: A three-dimensional computational SCS and a nerve fiber model were used to determine the effect of the lateral distance between two leads at the same vertebral level T8 and the effect of the addition of anodes with two parallel leads at T8 and three different lateral distances on the model-based results (perception thresholds, activated DC fiber area and depth, and position of the first stimulated fiber). RESULTS: With two parallel leads programmed with symmetrical polarities, the maximal DC fiber area stimulated was found for a lateral distance of 5 mm. The results also show a higher preference for DR stimulation as the lateral distance increased. The addition of positive contacts at the same level of active contacts in the second lead produces a displacement of the first stimulated fiber laterally. CONCLUSIONS: A lateral distance of 5 mm shows a DC stimulated fiber area greater than when leads are placed contiguously. The addition of anodes creates an effect whereby the area of paresthesia is not displaced to the midline, but in the opposite direction. This may be useful when the leads are too close and stimulation of one of the sides is compromised.


Assuntos
Estimulação da Medula Espinal , Eletrodos , Humanos , Manejo da Dor , Parestesia/etiologia , Parestesia/terapia , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodos
2.
J Neural Eng ; 18(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33556926

RESUMO

Objective.Although spinal cord stimulation (SCS) is an established therapy for treating neuropathic chronic pain, in tonic stimulation, postural changes, electrode migration or badly-positioned electrodes can produce annoying stimulation (intercostal neuralgia) in about 35% of the patients. SCS models are used to study the effect of electrical stimulation to better manage the stimulation parameters and electrode position. The goal of this work was to develop a realistic 3D patient-specific spinal cord model from a real patient and develop a future clinical application that would help physicians to optimize paresthesia coverage in SCS therapy.Approach.We developed two 3D patient-specific models from a high-resolution MRI of two patients undergoing SCS treatment. The model consisted of a finite element model of the spinal cord and a sensory myelinated nerve fiber model. The same simulations were performed with a generalized spinal cord model and we compared the results with the clinical data to evaluate the advantages of a patient-specific model. To identify the geometrical parameters that most influence the stimulation predictions, a sensitivity analysis was conducted. We used the patient-specific model to perform a clinical application involving the pre-implantation selection of electrode polarity and study the effect of electrode offset.Main results.The patient-specific model correlated better with clinical data than the generalized model. Electrode-dura mater distance, dorsal cerebrospinal fluid (CSF) thickness, and CSF diameter are the geometrical parameters that caused significant changes in the stimulation predictions. Electrode polarity could be planned and optimized to stimulate the patient's painful dermatomes. The addition of offset in parallel electrodes would not have been beneficial for one of the patients of this study because they reduce neural activation displacement.Significance.This is the first study to relate the activation area model prediction in dorsal columns with the clinical effect on paresthesia coverage. The outcomes show that 3D patient-specific models would help physicians to choose the best stimulation parameters to optimize neural activation and SCS therapy in tonic stimulation.


Assuntos
Estimulação da Medula Espinal , Simulação por Computador , Humanos , Dor , Parestesia/terapia , Medula Espinal , Estimulação da Medula Espinal/métodos
3.
Neuromodulation ; 22(3): 269-279, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30586207

RESUMO

OBJECTIVE: Using computer simulation, we investigated the effect of electrode polarity on neural activation in spinal cord stimulation and propose a new strategy to maximize the activating area in the dorsal column (DC) and, thus, paresthesia coverage in clinical practice. MATERIALS AND METHODS: A new three-dimensional spinal cord model at the T10 vertebral level was developed to simulate neural activation induced by the electric field distribution produced by different typical four-contact electrode polarities in single- and dual-lead stimulation. Our approach consisted of the combination of a finite element model of the spinal cord developed in COMSOL Multiphysics and a nerve fiber model implemented in MATLAB. Five evaluation parameters were evaluated, namely, the recruitment ratio, the perception and discomfort thresholds, and the activating area and depth. The results were compared quantitatively. RESULTS: The dual-guarded cathode presents the maximum activating area and depth in single- and dual-lead stimulation. However, the lowest value of the ratio between the perception threshold in DC and the perception threshold in the dorsal root (DR) is achieved when the guarded cathode is programmed. Although the two versions of bipolar polarity (namely bipolar 1 and bipolar 2) produce higher activating area and depth than the guarded cathode, they are suitable for producing DR stimulation. Similarly, dual-lead stimulation is likely to activate DR fibers because the electrodes are closer to these fibers. CONCLUSIONS: The results suggest that the activating area in the DC is maximized by using the dual-guarded cathode both in single- and dual-lead stimulation modes. However, DC nerve fibers are preferentially stimulated when the guarded cathode is used. According to these results, the new electrode programming strategy that we propose for clinical practice first uses the dual-guarded cathode, but, if the DR nerve fibers are activated, it then uses guarded cathode polarity.


Assuntos
Simulação por Computador , Eletrodos Implantados , Imageamento Tridimensional/métodos , Fibras Nervosas Mielinizadas/fisiologia , Parestesia/terapia , Estimulação da Medula Espinal/métodos , Adulto , Humanos , Parestesia/diagnóstico por imagem , Parestesia/fisiopatologia , Estimulação da Medula Espinal/instrumentação , Vértebras Torácicas/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...