Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1032489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325554

RESUMO

The identification of rootstocks of low susceptibility to Verticillium dahliae can become a valuable procedure to achieve effective control of Verticillium wilt in the olive grove. This not only involves the identification of suitable genotypes, but also the study of the interaction between the rootstock and the grafted scion. Thus, a rootstock that prevents or minimizes V. dahliae proliferation (avoidance/resistance strategy) can have very different effects on a susceptible scion compared to a rootstock that shows few or no symptoms despite being infected (tolerance strategy). Both resistance and tolerance mechanisms have been recently identified in wild olive genotypes with low susceptibility to V. dahliae. When used as rootstocks of the highly susceptible variety 'Picual', we found that resistant genotypes, including the cultivar 'Frantoio', were more effective than tolerant genotypes in controlling Verticillium wilt. Furthermore, tolerant genotypes were as ineffective as susceptible or extremely susceptible genotypes in controlling Verticillium wilt. We also identified rootstock-scion combinations with behaviours that were not expected according to the degree of susceptibility previously observed in the non-grafted rootstock. Although the rootstocks were able to control Verticillium wilt according to its degree of susceptibility to V. dahliae, the ability to control the infection was not adequately transferred to the grafted scion. Our results confirmed that: the degree of susceptibility to Verticillium wilt of an olive variety does not predict its performance as a rootstock; to use a very low susceptible genotype as rootstock of a susceptible scion increases the susceptibility of the genotype used as rootstock; in any case, avoidant/resistant rootstocks are more effective than tolerant rootstocks in reducing the susceptibility of the grafted plant to V. dahliae.

2.
Front Plant Sci ; 13: 1058774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704154

RESUMO

Chloride (Cl-) and nitrate ( NO 3 - ) are closely related anions involved in plant growth. Their similar physical and chemical properties make them to interact in cellular processes like electrical balance and osmoregulation. Since both anions share transport mechanisms, Cl- has been considered to antagonize NO 3 - uptake and accumulation in plants. However, we have recently demonstrated that Cl- provided at beneficial macronutrient levels improves nitrogen (N) use efficiency (NUE). Biochemical mechanisms by which beneficial Cl- nutrition improves NUE in plants are poorly understood. First, we determined that Cl- nutrition at beneficial macronutrient levels did not impair the NO 3 - uptake efficiency, maintaining similar NO 3 - content in the root and in the xylem sap. Second, leaf NO 3 - content was significantly reduced by the treatment of 6 mM Cl- in parallel with an increase in NO 3 - utilization and NUE. To verify whether Cl- nutrition reduces leaf NO 3 - accumulation by inducing its assimilation, we analysed the content of N forms and the activity of different enzymes and genes involved in N metabolism. Chloride supply increased transcript accumulation and activity of most enzymes involved in NO 3 - assimilation into amino acids, along with a greater accumulation of organic N (mostly proteins). A reduced glycine/serine ratio and a greater ammonium accumulation pointed to a higher activity of the photorespiration pathway in leaves of Cl--treated plants. Chloride, in turn, promoted higher transcript levels of genes encoding enzymes of the photorespiration pathway. Accordingly, microscopy observations suggested strong interactions between different cellular organelles involved in photorespiration. Therefore, in this work we demonstrate for the first time that the greater NO 3 - utilization and NUE induced by beneficial Cl- nutrition is mainly due to the stimulation of NO 3 - assimilation and photorespiration, possibly favouring the production of ammonia, reductants and intermediates that optimize C-N re-utilization and plant growth. This work demonstrates new Cl- functions and remarks on its relevance as a potential tool to manipulate NUE in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...