Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 111: 301-312, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949360

RESUMO

Arsenic and sulfur mineralization is a natural phenomenon occurring in hydrothermal systems where parameters like temperature and organic matter (OM) can influence the mobilization of the toxic metalloid in marine environments. In the present study we analyze the influence of temperature and OM (particularly sulfur-containing additives) on As and S precipitation based on the recent discovery of As-rich nanoparticles in the hydrothermal system near the coast of the Greek island Milos. To this end, we experimentally recreate the formation of amorphous colloidal particles rich in As and S via acidification (pH 3-4) of aqueous precursors at various temperatures. At higher temperatures, we observe the formation of monodisperse particles within the first 24 h of the experiment, generating colloidal particles with diameters close to 160 nm. The S:As ratio and particle size of the synthetized particles closely correlates with values for AsxSy particles detected in the hydrothermal system off Milos. Furthermore, organic sulfur containing additives (cysteine and glutathione, GSH) are a key factor in the process of nucleation and growth of amorphous colloidal AsxSy particles and, together with the temperature gradient present in shallow hydrothermal vents, dictate the stabilization of As-bearing nanomaterials in the environment. Based on these findings, we present a simple model that summarizes our new insights into the formation and mobility of colloidal As in aquatic ecosystems. In this context, amorphous AsxSy particles can present harmful effects to micro- and macro-biota not foreseen in bulk As material.


Assuntos
Arsênio , Fontes Hidrotermais , Nanopartículas , Ecossistema , Água do Mar , Enxofre , Água
2.
BMC Genomics ; 15: 1099, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25496196

RESUMO

BACKGROUND: Most semiconductor nanoparticles used in biomedical applications are made of heavy metals and involve synthetic methods that require organic solvents and high temperatures. This issue makes the development of water-soluble nanoparticles with lower toxicity a major topic of interest. In a previous work our group described a biomimetic method for the aqueous synthesis of CdTe-GSH Quantum Dots (QDs) using biomolecules present in cells as reducing and stabilizing agents. This protocol produces nanoparticles with good fluorescent properties and less toxicity than those synthesized by regular chemical methods. Nevertheless, biomimetic CdTe-GSH nanoparticles still display some toxicity, so it is important to know in detail the effects of these semiconductor nanoparticles on cells, their levels of toxicity and the strategies that cells develop to overcome it. RESULTS: In this work, the response of E. coli exposed to different sized-CdTe-GSH QDs synthesized by a biomimetic protocol was evaluated through transcriptomic, biochemical, microbiological and genetic approaches. It was determined that: i) red QDs (5 nm) display higher toxicity than green (3 nm), ii) QDs mainly induce expression of genes involved with Cd+2 stress (zntA and znuA) and tellurium does not contribute significantly to QDs-mediated toxicity since cells incorporate low levels of Te, iii) red QDs also induce genes related to oxidative stress response and membrane proteins, iv) Cd2+ release is higher in red QDs, and v) QDs render the cells more sensitive to polymyxin B. CONCLUSION: Based on the results obtained in this work, a general model of CdTe-GSH QDs toxicity in E. coli is proposed. Results indicate that bacterial toxicity of QDs is mainly associated with cadmium release, oxidative stress and loss of membrane integrity. The higher toxicity of red QDs is most probably due to higher cadmium content and release from the nanoparticle as compared to green QDs. Moreover, QDs-treated cells become more sensitive to polymyxin B making these biomimetic QDs candidates for adjuvant therapies against bacterial infections.


Assuntos
Compostos de Cádmio/química , Escherichia coli/efeitos dos fármacos , Glutationa/química , Pontos Quânticos/toxicidade , Telúrio/química , Antibacterianos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/toxicidade , Parede Celular/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma
3.
Microb Cell Fact ; 13(1): 90, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25027643

RESUMO

BACKGROUND: One of the major challenges of nanotechnology during the last decade has been the development of new procedures to synthesize nanoparticles. In this context, biosynthetic methods have taken hold since they are simple, safe and eco-friendly. RESULTS: In this study, we report the biosynthesis of TiO2 nanoparticles by an environmental isolate of Bacillus mycoides, a poorly described Gram-positive bacterium able to form colonies with novel morphologies. This isolate was able to produce TiO2 nanoparticles at 37 ° C in the presence of titanyl hydroxide. Biosynthesized nanoparticles have anatase polymorphic structure, spherical morphology, polydisperse size (40-60 nm) and an organic shell as determined by UV-vis spectroscopy, TEM, DLS and FTIR, respectively. Also, conversely to chemically produced nanoparticles, biosynthesized TiO2 do not display phototoxicity. In order to design less expensive and greener solar cells, biosynthesized nanoparticles were evaluated in Quantum Dot Sensitized Solar Cells (QDSSCs) and compared with chemically produced TiO2 nanoparticles. Solar cell parameters such as short circuit current density (ISC) and open circuit voltage (VOC) revealed that biosynthesized TiO2 nanoparticles can mobilize electrons in QDSSCs similarly than chemically produced TiO2. CONCLUSIONS: Our results indicate that bacterial extracellular production of TiO2 nanoparticles at low temperatures represents a novel alternative for the construction of green solar cells.


Assuntos
Bacillus/metabolismo , Nanopartículas/química , Pontos Quânticos/metabolismo , Energia Solar , Titânio/metabolismo , Fontes de Energia Elétrica , Tamanho da Partícula , Pontos Quânticos/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...