Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 294: 106958, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682087

RESUMO

Gentamicin is used to treat brucellosis, an infectious disease caused by the Brucella species but the drug faces several issues such as low efficacy, instability, low solubility, and toxicity. It also has a very short half-life, therefore, requiring frequent dosing. Consequently, several other antibiotics are also being used for the treatment of brucellosis as a single dose as well as in combination with other antibiotics but none of these therapies are satisfactory. Nanoparticles in particular polymer-based ones utilizing polymers that are biodegradable and biocompatible for instance PLGA are a method of choice to overcome such drug delivery issues and enable potential targeted delivery. The current study focuses on the evaluation of the structural and dynamical properties of a drug-polymer system consisting of gentamicin drug and PLGA polymer nanoparticles in the water representing a targeted drug delivery system for the treatment of brucellosis. For this purpose, all-atom molecular dynamics simulations were carried out on the drug-polymer systems in the absence and presence of the surfactant bis(2-Ethylhexyl) sulfosuccinate (AOT) to determine the structural and dynamical properties as well as the effect of the surfactant on these properties. We also investigated systems in which the polymer constituents were in the form of monomeric units toward decoupling the primary interactions of the monomer units and polymer effects. The simulation results explain the nature of the interactions between the drug and the polymer as well as transport properties in terms of drug diffusion coefficients, which characterize the molecular behavior of gentamicin-polymer nanoparticles for use in brucellosis.


Assuntos
Brucelose , Nanopartículas , Humanos , Gentamicinas/química , Gentamicinas/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Ácido Poliglicólico/química , Ácido Poliglicólico/uso terapêutico , Simulação de Dinâmica Molecular , Teoria da Densidade Funcional , Ácido Láctico/química , Ácido Láctico/uso terapêutico , Antibacterianos/química , Sistemas de Liberação de Medicamentos , Brucelose/tratamento farmacológico , Glicolatos/uso terapêutico , Tensoativos
2.
J Mol Model ; 29(2): 51, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680606

RESUMO

Molecular dynamics simulations were applied to human 5-LOX to obtain detailed information on its structure and dynamics with and without ligands. The dynamical properties evaluated based on root mean square deviations, root mean square fluctuations and secondary structure prediction helped decipher the contrast dynamic behavior of the systems pointing toward the ligand binding effect. The ligand binding to the protein also perturbed other properties of the protein such as the central bending of the protein and water coordination to the metal ion. The central bending in the protein was reported to be very significant that was associated with the allosteric modulation in the lipoxygenases; therefore, on a similar line, the central bending was evaluated in terms of hinge angle analysis which showed substantial bending between the C-terminal and the N-terminal domain via the linker residues which connects the two domains. On the other hand, the suspected water coordination to the metal ion in the protein was ruled out by computing the iron-water radial distribution function which showed that the water molecule was not found to be in the vicinity of the metal ion. Finally, the binding free energy was estimated for Zileuton and CAPE1 inhibitors bound to 5-LOX via the thermodynamic integration approach which showed that CAPE1 had a strong binding potential for the active site of the protein compared to Zileuton, and the free energy data correlated well with their IC50 values corresponding to the high inhibition potential of CAPE1 compared to Zileuton.


Assuntos
Araquidonato 5-Lipoxigenase , Simulação de Dinâmica Molecular , Humanos , Ligantes , Proteínas/química , Água/química , Ligação Proteica
3.
Biomed Chromatogr ; 33(9): e4567, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31042298

RESUMO

A poly(dibenzo-18-crown-6) was used as a new solid-phase extraction material for the selective enrichment of phosphopeptides. Isolation of phosphopeptides was achieved based on specific ionic interactions between poly(dibenzo-18-crown-6) and the phosphate group of phosphopeptides. Thus, a method was developed and optimized, including loading, washing and elution steps, for the selective enrichment of phosphopeptides. To assess this potential, tryptic digest of three proteins (α- casein, ß-casein and ovalbumin) was applied on poly(dibenzo-18-crown-6). The nonspecific products were removed by centrifugation and washing. The spectrometric analysis was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Highly selective enrichment of both mono- and multiphosphorylated peptides was achieved using poly(dibenzo-18-crown-6) as solid-phase extraction material with minimum interference from nonspecific compounds. Furthermore, evaluation of the efficiency of the poly(dibenzo-18-crown-6) was performed by applying the digest of egg white. Finally, quantum mechanical calculations were performed to calculate the binding energies to predict the affinity between poly(dibenzo-18-crown-6) and various ligands. The newly identified solid-phase extraction material was found to be a highly efficient tool for phosphopeptide recovery from tryptic digest of proteins.


Assuntos
Éteres de Coroa/química , Fosfopeptídeos/isolamento & purificação , Extração em Fase Sólida/métodos , Modelos Moleculares , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fosfopeptídeos/análise , Fosfopeptídeos/química , Polímeros/química , Proteômica , Extração em Fase Sólida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...