Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(30): 36492-36498, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34296846

RESUMO

Bismuth-antimony alloy (Bi1 - xSbx) is the first reported 3D topological insulator (TI). Among many TIs reported to date, it remains the most promising for spintronic applications thanks to its large conductivity, its colossal spin Hall angle, and the possibility to build low-current spin-orbit-torque magnetoresistive random access memories. Nevertheless, the 2D integration of TIs on industrial standards is lacking. In this work, we report the integration of high-quality rhombohedral BiSb(0001) topological insulators on a cubic GaAs(001) substrate. We demonstrate a clear epitaxial relationship at the interface, a fully relaxed TI layer, and the growth of a rhombohedral matrix on top of the cubic substrate. The antimony composition of the Bi1 - xSbx layer is perfectly controlled and covers almost the whole TI window. For optimized growth conditions, the sample generates a semiconductor band structure at room temperature in the bulk and exhibits metallic surface states at 77 K.

2.
Phys Chem Chem Phys ; 22(6): 3173-3183, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31697293

RESUMO

This paper deals with the investigations of terephthalic acid (TPA) molecules deposited on a low reactive Ag(111) surface and studied using scanning tunneling microscopy (STM) at low temperature and DFT calculations. These investigations show that two deprotonation states energetically equivalent can be produced at the single molecule level. On self assemblies, the mobility of H atoms at 77 K favours the motion of created defects in the layer. STM observations and DFT calculations show that the most stable structures are obtained when only one hydrogen atom is removed from an O-HO bond and when these deprotonated molecules are located in adjacent TPA rows.

3.
ACS Nano ; 11(10): 10357-10365, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28862430

RESUMO

The molecular conformation of a bisbinaphthyldurene (BBD) molecule is manipulated using a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV STM) on an Au(111) surface. BBD has two binaphthyl groups at both ends connected to a central durene leading to anti/syn/flat conformers. In solution, dynamic nuclear magnetic resonance indicated the fast interexchange between the anti and syn conformers as confirmed by density functional theory calculations. After deposition in a submonolayer on an Au(111) surface, only the syn conformers were observed forming small islands of self-assembled syn dimers. The syn dimers can be separated into syn monomers by STM molecular manipulations. A flat conformer can also be prepared by using a peculiar mechanical unfolding of a syn monomer by STM manipulations. The experimental STM dI/dV and theoretical elastic scattering quantum chemistry maps of the low-lying tunneling resonances confirmed the flat conformer BBD molecule STM production. The key BBD electronic states for a step-by-step STM inelastic excitation lateral motion on the Au(111) are presented requiring no mechanical interactions between the STM tip apex and the BBD. On the BBD molecular board, selected STM tip apex positions for this inelastic tunneling excitation enable the flat BBD to move controllably on Au(111) by a step of 0.29 nm per bias voltage ramp.

4.
ACS Nano ; 11(10): 9930-9940, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28756663

RESUMO

The surface diffusion of individual molecules is of paramount importance in self-assembly processes and catalytic processes. However, the fundamental understanding of molecule diffusion peculiarities considering conformations and adsorption sites remain poorly known at the atomic scale. Here, we probe the 4'-(4-tolyl)-2,2':6',2″-terpyridine adsorbed on the Au(111) herringbone structure combining scanning tunneling microscopy and atomic force microscopy. Molecules are controllably translated by electrons excitations over the reconstruction, except at elbows acting as pinning centers. Experimental data supported by theoretical calculations show the formation of coordination bonds between the molecule and Au atoms of the surface. Using force spectroscopy, we quantify local variation of the surface potential and the lateral force required to move the molecule. We found an elevation of the diffusion barrier at elbows of the reconstruction of ∼100 meV compared to the rest of the surface.

5.
Rev Sci Instrum ; 87(8): 083702, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587126

RESUMO

We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.

6.
Lab Chip ; 16(11): 2126-34, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27171977

RESUMO

Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.

7.
Nano Lett ; 16(4): 2213-20, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26954427

RESUMO

We show a new method to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators using a four-probe transport spectroscopy in a multiprobe scanning tunneling microscopy system. We derive a scaling relation of measured resistance with respect to varying interprobe spacing for two interconnected conduction channels to allow quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 against a pure 2D conductance of graphene on SiC substrate. We also quantitatively show the effect of surface doping carriers on the 2D conductance enhancement in topological insulators. The method offers a means to understanding not just the topological insulators but also the 2D to 3D crossover of conductance in other complex systems.

8.
Sci Rep ; 5: 12238, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26192733

RESUMO

High electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digital switches. These graphene-BNNT heterojunctions were characterized at room temperature by four-probe scanning tunneling microscopy (4-probe STM) under real-time monitoring of scanning electron microscopy (SEM). A switching ratio as high as 10(5) at a turn-on voltage as low as 0.5 V were recorded. Simulation by density functional theory (DFT) suggests that mismatch of the density of states (DOS) is responsible for these novel switching behaviors.

9.
ACS Nano ; 9(5): 5405-12, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25941841

RESUMO

Nanowires of the same composition, and even fabricated within the same batch, often exhibit electrical conductivities that can vary by orders of magnitude. Unfortunately, existing electrical characterization methods are time-consuming, making the statistical survey of highly variable samples essentially impractical. Here, we demonstrate a contactless, solution-based method to efficiently measure the electrical conductivity of 1D nanomaterials based on their transient alignment behavior in ac electric fields of different frequencies. Comparison with direct transport measurements by probe-based scanning tunneling microscopy shows that electro-orientation spectroscopy can quantitatively measure nanowire conductivity over a 5-order-of-magnitude range, 10(-5)-1 Ω(-1) m(-1) (corresponding to resistivities in the range 10(2)-10(7) Ω·cm). With this method, we statistically characterize the conductivity of a variety of nanowires and find significant variability in silicon nanowires grown by metal-assisted chemical etching from the same wafer. We also find that the active carrier concentration of n-type silicon nanowires is greatly reduced by surface traps and that surface passivation increases the effective conductivity by an order of magnitude. This simple method makes electrical characterization of insulating and semiconducting 1D nanomaterials far more efficient and accessible to more researchers than current approaches. Electro-orientation spectroscopy also has the potential to be integrated with other solution-based methods for the high-throughput sorting and manipulation of 1D nanomaterials for postgrowth device assembly.

10.
Soft Matter ; 11(2): 237-40, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25460853

RESUMO

PDGI-PAAm gels with well oriented lipid bilayers show a quasi-unidirectional shrinkage upon uniaxial stretching along the bilayers. They shrink largely parallel to the bilayer but slightly perpendicular to it in order not to increase the bilayer area and its interfacial energy. Such an anisotropic deformation can be well-modelled based on classical theories for gel networks and lipid layers.


Assuntos
Bicamadas Lipídicas/química , Fenômenos Biomecânicos , Géis/química , Torção Mecânica
11.
Nat Commun ; 5: 5403, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25377633

RESUMO

Two-dimensional interfaces between crystalline materials have been shown to generate unusual interfacial electronic states in complex oxides. Recently, a one-dimensional interface has been realized in hexagonal boron nitride and graphene planar heterostructures, where a polar-on-nonpolar one-dimensional boundary is expected to possess peculiar electronic states associated with edge states of graphene and the polarity of boron nitride. Here we present a combined scanning tunnelling microscopy and first-principles theory study of the graphene-boron nitride boundary to provide a first glimpse into the spatial and energetic distributions of the one-dimensional boundary states down to atomic resolution. The revealed boundary states are about 0.6 eV below or above the Fermi level depending on the termination of the boron nitride at the boundary, and are extended along but localized at the boundary. These results suggest that unconventional physical effects similar to those observed at two-dimensional interfaces can also exist in lower dimensions.

12.
Nano Lett ; 14(10): 5636-40, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25244561

RESUMO

Carrier multiplication (CM), the creation of electron-hole pairs from an excited electron, has been investigated in a silicon p-n junction by multiple probe scanning tunneling microscopy. The technique enables an unambiguous determination of the quantum yield based on the direct measurement of both electron and hole currents that are generated by hot tunneling electrons. The combined effect of impact ionization, carrier diffusion, and recombination is directly visualized from the spatial mapping of the CM efficiency. Atomically well-ordered areas of the p-n junction surface sustain the highest CM rate, demonstrating the key role of the surface in reaching high yield.

13.
Nanotechnology ; 24(27): 275706, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23764855

RESUMO

We report a significant and persistent enhancement of the conductivity in free-standing non-intentionally doped InAs nanowires upon irradiation in ultra-high vacuum. Combining four-point probe transport measurements performed on nanowires with different surface chemistries, field effect based measurements and numerical simulations of the electron density, the change in the conductivity is found to be caused by an increase in the surface free carrier concentration. Although an electron beam of a few keV, typically used for the inspection and the processing of materials, propagates through the entire nanowire cross-section, we demonstrate that the electrical properties of the nanowire are predominantly affected by radiation-induced defects occurring at the nanowire surface and not in the bulk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...