Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Cell Mater ; 37: 233-249, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30924522

RESUMO

Mesenchymal stem cells (MSCs) can differentiate toward epithelial cells and may be used as an alternative source for generation of heterotypical artificial human skin substitutes, thus, enhancing their development and translation potential to the clinic. The present study aimed at comparing four types of heterotypical human bioengineered skin generated using MSCs as an alternative epithelial cell source. Adipose-tissue-derived stem cells (ADSCs), dental pulp stem cells (DPSCs), Wharton's jelly stem cells (WJSCs) and bone marrow stem cells (BMSCs) were used for epidermal regeneration on top of dermal skin substitutes. Heterotypic human skin substitutes were evaluated before and after implantation in immune-deficient athymic mice for 30 d. Histological and genetic studies were performed to evaluate extracellular matrix synthesis, epidermal differentiation and human leukocyte antigen (HLA) molecule expression. The four cell types differentiated into keratinocytes, as shown by the expression of cytokeratin 10 and filaggrin 30 d post-grafting; also, they induced dermal fibroblasts responsible for the synthesis of extracellular fibrillar and non-fibrillar components, in a similar way among each other. WJSCs and BMSCs showed higher expression of cytokeratin 10 and filaggrin, suggesting these cells were more prone to epidermal regeneration. The absence of HLA molecules, even when the epithelial layer was differentiated, supports the future clinical use of these substitutes - especially ADSCs, DPSCs and WJSCs - with low rejection risk. MSCs allowed the generation of bioengineered human skin substitutes with potential clinical usefulness. According to their epidermal differentiation potential and lack of HLA antigens, WJSCs should preferentially be used.


Assuntos
Células-Tronco Mesenquimais/citologia , Pele Artificial , Engenharia Tecidual/métodos , Animais , Biomarcadores/metabolismo , Derme/citologia , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Proteínas Filagrinas , Regulação da Expressão Gênica , Antígenos HLA/metabolismo , Humanos , Camundongos Nus
2.
Histochem Cell Biol ; 150(4): 379-393, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29931444

RESUMO

Microtissues (MT) are currently considered as a promising alternative for the fabrication of natural, 3D biomimetic functional units for the construction of bio-artificial substitutes by tissue engineering (TE). The aim of this study was to evaluate the possibility of generating mesenchymal cell-based MT using human umbilical cord Wharton's jelly stromal cells (WJSC-MT). MT were generated using agarose microchips and evaluated ex vivo during 28 days. Fibroblasts MT (FIB-MT) were used as control. Morphometry, cell viability and metabolism, MT-formation process and ECM synthesis were assessed by phase-contrast microscopy, functional biochemical assays, and histological analyses. Morphometry revealed a time-course compaction process in both MT, but WJSC-MT resulted to be larger than FIB-MT in all days analyzed. Cell viability and functionality evaluation demonstrated that both MT were composed by viable and metabolically active cells, especially the WJSC during 4-21 days ex vivo. Histology showed that WJSC acquired a peripheral pattern and synthesized an extracellular matrix-rich core over the time, what differed from the homogeneous pattern observed in FIB-MT. This study demonstrates the possibility of using WJSC to create MT containing viable and functional cells and abundant extracellular matrix. We hypothesize that WJSC-MT could be a promising alternative in TE protocols. However, future cell differentiation and in vivo studies are still needed to demonstrate the potential usefulness of WJSC-MT in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Geleia de Wharton/citologia , Sobrevivência Celular , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Geleia de Wharton/metabolismo
3.
Histol Histopathol ; 33(2): 147-156, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28444679

RESUMO

Cell-derived matrices were recently described as novel biomaterials generated by human cells allowed to grow and synthetize their own extracellular matrix in culture. In the present work, we generated and evaluated a novel tissue-like substitute (WDM) consisting of a membrane derived from cultured human Wharton's jelly stem cells. WDM were evaluated ex vivo and in vivo by histochemistry and immunohistochemistry for several mesenchymal cell markers and fibrillar and non-fibrillar extracellular matrix components. Results show that WDM were heterogeneous and consisted of dense cell-poor areas surrounded by cell-rich zones with abundant HWJSC. Histological analyses demonstrated that cell-poor areas were very rich in fibrillar and non-fibrillar extracellular matrix components such as collagen and proteoglycans, and cells in the WDM were highly viable and mostly PCNA-positive. HWJSC in the WDM expressed all markers of this cell type, including CD90, CD105, pan cytokeratin and CK8. In vivo analysis showed that the WDM was highly biocompatible and grafting this membrane in the muscle of laboratory rats was not associated to increased inflammation, necrosis, tumorigenesis or other side effects, while cells properly integrated at the damage site and showed high proliferation index. These results suggest that the structure and composition of the extracellular matrix of these novel WDM could reproduce the situation of native human tissues and that WDM implanted in vivo are highly biocompatible and rapidly integrate in the host tissues. For these reasons, we hypothesize that WDM could be used in regenerative medicine protocols.


Assuntos
Matriz Extracelular , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Geleia de Wharton/citologia , Animais , Células Cultivadas , Xenoenxertos , Humanos , Masculino , Membranas , Ratos , Ratos Wistar , Cordão Umbilical/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...