Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 7(5)2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27651356

RESUMO

UNLABELLED: Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these signaling responses. However, mechanisms explaining the blunted signaling have not been elucidated. In this study, we used several independent biological assays, including inhibition of virus replication, RIG-I:RNA binding assays, and limited trypsin digestion of RIG-I:RNA complexes, to begin to understand how RNAs containing modified nucleotides avoid or suppress innate immune signaling. The experiments were based on a model innate immune activating RNA molecule, the polyU/UC RNA domain of hepatitis C virus, which was transcribed in vitro with canonical nucleotides or with one of eight modified nucleotides. The approach revealed signature assay responses associated with individual modified nucleotides or classes of modified nucleotides. For example, while both N-6-methyladenosine (m6A) and pseudouridine nucleotides correlate with diminished signaling, RNA containing m6A modifications bound RIG-I poorly, while RNA containing pseudouridine bound RIG-I with high affinity but failed to trigger the canonical RIG-I conformational changes associated with robust signaling. These data advance understanding of RNA-mediated innate immune signaling, with additional relevance for applying nucleotide modifications to RNA therapeutics. IMPORTANCE: The innate immune system provides the first response to virus infections and must distinguish between host and pathogen nucleic acids to mount a protective immune response without activating autoimmune responses. While the presence of nucleotide modifications in RNA is known to correlate with diminished innate immune signaling, the underlying mechanisms have not been explored. The data reported here are important for defining mechanistic details to explain signaling suppression by RNAs containing modified nucleotides. The results suggest that RNAs containing modified nucleotides interrupt signaling at early steps of the RIG-I-like innate immune activation pathway and also that nucleotide modifications with similar chemical structures can be organized into classes that suppress or evade innate immune signaling steps. These data contribute to defining the molecular basis for innate immune signaling suppression by RNAs containing modified nucleotides. The results have important implications for designing therapeutic RNAs that evade innate immune detection.


Assuntos
Proteína DEAD-box 58/química , Proteína DEAD-box 58/imunologia , Imunidade Inata , RNA Viral/química , RNA Viral/imunologia , Ribonucleosídeos/química , Linhagem Celular , Proteína DEAD-box 58/metabolismo , Hepacivirus/genética , Humanos , Interferon beta/biossíntese , Modelos Moleculares , RNA Viral/metabolismo , Ribonucleosídeos/metabolismo , Transdução de Sinais
2.
Nat Immunol ; 15(8): 717-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24952503

RESUMO

Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.


Assuntos
Imunidade Inata , Interferons/imunologia , Peroxissomos/imunologia , Animais , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Diferenciação Celular , Linhagem Celular , Cicloexanos/farmacologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Inibidores Enzimáticos/farmacologia , Humanos , Interferons/biossíntese , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Camundongos , Piridonas/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Receptores Imunológicos , Reoviridae/imunologia , Infecções por Reoviridae/imunologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/imunologia , Transdução de Sinais/imunologia , Tirfostinas/farmacologia , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...