Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559103

RESUMO

During assembly on the plasma membrane, HIV-1 virions incorporate Gag-Pol as well as gp120/gp41 trimers. The Pol region consists of protease, reverse transcriptase and integrase precursors which are essential enzymes required for maturation, reverse transcription, and integration of the viral genome in the next host. gp120/gp41 trimers catalyze the fusion of the virion with its next host. Only a fraction of released virions are infectious. The stoichiometry of gp120/gp41 and Gag-Pol proteins in HIV virions was previously measured using cryotomography and ratiometric protein analysis, but what is the stoichiometry of these proteins in infectious virions remained to be determined. Here we developed a method based on competition between infectious HIV backbones with noninfectious mutants and measured 100 ± 10 Gag-Pol and 15 ± 3 gp120/gp41 proteins incorporated in infectious virions assembled in HEK293 cells from NL4.3 HIV-1 backbone. Our measurements are in broad agreement with cryotomography and ratiometric protein analysis and therefore stoichiometry of gp120/gp41 and Gag-Pol in infectious virions is the same as all released virions. With the development of appropriate mutants and infectivity assays, our method is applicable to other infectious viruses. Statement of significance: There are 30 million people who have succumbed to the AIDS pandemic with 600,000 additional deaths per year. HIV has an accelerated rate of mutational accumulation with the virus mutating out of neutralizing antibodies within the same patient making development of vaccines challenging. Like most enveloped viruses, only a fraction of released virions are infectious and the question of what selects these virions has remained a mystery. The method developed in this article will allow stoichiometric measurements on infectious virions and therefore allows further studies of causes of infectivity.

2.
Viruses ; 13(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34696376

RESUMO

Immature HIV virions harbor a lattice of Gag molecules with significant ordering in CA-NTD, CA-CTD and SP1 regions. This ordering plays a major role during HIV maturation. To test the condition in which the Gag lattice forms in vivo, we assembled virus like particles (VLPs) by expressing only HIV Gag in mammalian cells. Here we show that these VLPs incorporate a similar number of Gag molecules compared to immature HIV virions. However, within these VLPs, Gag molecules diffuse with a pseudo-diffusion rate of 10 nm2/s, this pseudo-diffusion is abrogated in the presence of melittin and is sensitive to mutations within the SP1 region. Using cryotomography, we show that unlike immature HIV virions, in the Gag lattice of VLPs the CA-CTD and SP1 regions are significantly less ordered. Our observations suggest that within immature HIV virions, other viral factors in addition to Gag, contribute to ordering in the CA-CTD and SP1 regions.


Assuntos
HIV-1/química , Vírion/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Humanos , Modelos Moleculares , Mutação , Vírion/genética , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...