Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19681, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608179

RESUMO

Sprouts are particularly prone to microbial contamination due to their high nutrient content and the warm temperatures and humid conditions needed for their production. Therefore, disinfection is a crucial step in food processing as a means of preventing the transmission of bacterial, parasitic and viral pathogens. In this study, a dielectric coplanar surface barrier discharge (DCSBD) system was used for the application of cold atmospheric plasma (CAP), plasma activated water (PAW) and their combination on mung bean seeds. Germination assessments were performed in a test tube set-up filled with glass beads and the produced irrigation water. Overall, it was found that the combined seed treatment with direct air CAP (350 W) and air PAW had no negative impact on mung bean seed germination and growth, nor the concentration of secondary metabolites within the sprouts. These treatments also reduced the total microbial population in sprouts by 2.5 log CFU/g. This research reports for first time that aside from the stimulatory effect of plasma discharge on seed surface disinfection, sustained plasma treatment through irrigation of treated seeds with PAW can significantly enhance seedling growth. The positive outcome and further applications of different forms, of plasma i.e., gaseous and aqueous, in the agro-food industry is further supported by this research.

2.
Front Microbiol ; 11: 884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523562

RESUMO

The role of insects for human consumption has lately increased in interest and in order to deliver safe and high-quality raw materials and ingredients for food and feed applications, processing of insects is a major pre-requisite. For edible insects a thermal treatment and appropriate storage conditions are recommended to minimize the microbiological risk and the impact of processing methods on the microbial contamination needs to be considered and determined. Based on standard process conditions for the production of Acheta domesticus flour, different heating treatments were used to reduce the microbial load of A. domesticus. In addition, the drying temperature and drying time were varied to determine whether the required residual moisture of <5% can be achieved more quickly with consistent microbial quality. The influence of the process conditions on the microbial community of A. domesticus along the processing chain was finally investigated under optimized process conditions. The total viable count was reduced from 9.24 log10 CFU/gDM to 1.98 log10 CFU/gDM along the entire processing chain. While Bacillaceae, Enterobacteriaceae, Enterococcaceae, and yeast and molds were no longer detectable in the A. domesticus flour, Staphylococcaceae and mesophilic spore forming bacteria were still found in the flour. The results indicate that the steaming process is essential for effectively increasing microbial safety since this processing step showed the highest inactivation. It is recommended to not only evaluate the total viable count but also to monitor changes in microbial diversity during processing to ensure microbial safety of the final product.

3.
Front Microbiol ; 9: 2782, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519219

RESUMO

Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins. Besides their high toxicity, mycotoxins are highly stable to physical, chemical or biological detoxification. Therefore, the treatment with cold atmospheric plasma could be one approach to reduce the amount of mycotoxins in different products. The aim of this study was to determine the influence of cold atmospheric plasma on the inactivation of Aspergillus niger and Penicillium verrucosum inoculated on barley and their production of OTA. Inoculated barley was treated with plasma generated by dry air, CO2 or CO2 + O2 for 1 or 3 min and stored for up to two weeks at 9, 25, or 37°C. Three minutes of air plasma treatment effectively significantly reduced the total mold count of both microorganisms by 2.5-3 log cycles. The production of OTA from A. niger was only low, therefore the treatment effect was indistinguishable. The treatment of P. verrucosum on barley after an incubation of five days using a CO2 + O2 plasma resulted in a reduction of the OTA content from 49.0 (untreated) to 27.5 (1 min) and 23.8 ng/g (3 min), respectively. In contrast, CO2 plasma caused an increase of the OTA amount from 49.0 (untreated) to 55.8 (1 min) and 72.9 ng/g (3 min). Finally, the use of air plasma resulted likewise in a decrease of the OTA concentration from 56.9 (untreated) to 25.7 (1 min) and 20.2 ng/g (3 min), respectively. Reducing the incubation time before the treatment to 24 h caused in contrast an increase of the OTA content from 3.1 (untreated) to 29.1 (1 min) and 20.7 ng/g (3 min). Due to the high standard deviation, these changes were not significant, but the tendencies were clearly visible, showing the strong impact of the plasma gas on the OTA production. The results show, that even if the total mold count was reduced, under certain conditions the OTA amount was yet enhanced, probably due to a stress reaction of the mold. Concluding, the plasma gas and incubation conditions have to be considered to allow a successful inactivation of molds and in particular their toxic metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...