Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(15): 7907-7917, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916065

RESUMO

Two-dimensional (2D) antimonene, bismuthene, and their binary compound 2D BiSb possess high spin-orbit coupling (SOC) and potential topological insulator properties upon engineering their structural and chemical properties. Based on many-body first-principles calculations, we show that these materials can exhibit isotropic or anisotropic optoelectronic properties depending on their geometry, i.e. buckled (hb) or asymmetrical washboard (aw) phases. SOC significantly alters their optoelectronic properties, which is predominantly evident in 2D bismuthene. hb-antimonene absorbs light in the visible and partially in the ultraviolet regimes, while the absorption band edge for aw-antimonene, hb- and aw-bismuthene is set at the infrared region, absorption being spread as a broadband optical response through the spectral range. An exciton binding with 0.18 eV energy is detected for hb-bismuthene. Due to their broadband optical response, antimonene, bismuthene, and their binary compound offer possibilities towards applications as 2D materials in solar cells, light-emitting devices, photodetectors and light modulation.

2.
Nanoscale ; 10(46): 21842-21850, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30457147

RESUMO

A suspended single layer of GaN in a honeycomb structure is stable in a planar geometry. By stacking these GaN layers one can construct bilayers or multilayers, even new three-dimensional (3D) periodic structures. In this study, we clarified how the planar layers are buckled with the onset of vertical Ga-N bonds. Among the four stable phases of bilayer GaN, only one of them maintains the planar geometry, which is bound by weak van der Waals interactions. For the remaining three phases, the layers are buckled with the onset of weak vertical bonds, and attain total energies slightly lower than that of the planar geometry. Structural phase changes, as well as direct-indirect band transitions take place under strain and electrostatic charging. The vertical bonds become shorter in multilayers, and eventually attain the bulk value. Among the stable phases of 3D periodic GaN, only one with a graphite-like structure behaves as a layered, van der Waals solid; whereby others are 3D uniform crystals beyond the van der Waals solid.

3.
Phys Chem Chem Phys ; 20(32): 21043-21050, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074038

RESUMO

Following its synthesis, borophene has drawn noticeable attention due to its remarkable intrinsic properties. Understanding and modifying these properties are crucial for implementation of borophene in high-technological applications. In this study, we employed ab initio techniques to examine the variation of the optoelectronic properties of buckled borophene by strain and surface functionalization. We find that the optical response can be tuned by applying compressive/tensile strain and covering the surface with hydrogen and fluorine atoms. It is shown that the variations in optical properties can be correlated with structural deformations and modifications in the electronic band structure. Revealing the tunability of the optical response of borophene can pave the way for its potential uses in various optoelectronic devices.

4.
J Phys Condens Matter ; 29(9): 095303, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28059776

RESUMO

The effect of B and P dopants on the band structure of Si nanowires is studied using electronic structure calculations based on density functional theory. At low concentrations a dispersionless band is formed, clearly distinguishable from the valence and conduction bands. Although this band is evidently induced by the dopant impurity, it turns out to have purely Si character. These results can be rigorously analyzed in the framework of effective mass theory. In the process we resolve some common misconceptions about the physics of hydrogenic shallow impurities, which can be more clearly elucidated in the case of nanowires than would be possible for bulk Si. We also show the importance of correctly describing the effect of dielectric confinement, which is not included in traditional electronic structure calculations, by comparing the obtained results with those of G0W0 calculations.

5.
J Phys Chem Lett ; 5(15): 2694-9, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26277965

RESUMO

Germanene, a graphene-like single-layer structure of Ge, has been shown to be stable and recently grown on Pt and Au substrates. We show that a Ge adatom adsorbed on germanene pushes down the host Ge atom underneath and forms a dumbbell structure. This exothermic process occurs spontaneously. The attractive dumbbell-dumbbell interaction favors high coverage of dumbbells. This Letter heralds stable new phases of germanene, which are constructed from periodically repeating coverage of dumbbell structures and display diversity of electronic and magnetic properties.

6.
J Phys Chem Lett ; 4(6): 854-60, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26291346

RESUMO

Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

7.
Phys Rev Lett ; 103(24): 247601, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20366228

RESUMO

Using first-principles calculations based on density functional theory, we study the properties of germanium telluride crystalline nanoplatelets and nanoparticles. Above a diameter of 2.7 nm, we predict the appearance of polarization vortices giving rise to an unusual ferrotoroidic ground state with a spontaneous and reversible toroidal moment of polarization. We highlight the crucial role of inhomogeneous strain in stabilizing polarization vortices. Combined with the phase-change properties of germanium telluride, the ferrotoroidic properties could be of practical interest for ternary logic applications.

8.
Phys Rev Lett ; 99(25): 256806, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18233547

RESUMO

From first-principles calculations, we predict that specific transition metal (TM) atom-adsorbed silicon nanowires have a half-metallic ground state. They are insulators for one spin direction, but show metallic properties for the opposite spin direction. At high coverage of TM atoms, ferromagnetic silicon nanowires become metallic for both spin directions with high magnetic moment and may have also significant spin polarization at the Fermi level. The spin-dependent electronic properties can be engineered by changing the type of adsorbed TM atoms, as well as the diameter of the nanowire. Present results are not only of scientific interest, but also can initiate new research on spintronic applications of silicon nanowires.

9.
Phys Rev Lett ; 97(22): 226102, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17155816

RESUMO

From first-principles calculations, we predict that a single ethylene molecule can form a stable complex with two transition metals (TM) such as Ti. The resulting TM-ethylene complex then absorbs up to ten hydrogen molecules, reaching to gravimetric storage capacity of approximately 14 wt %. Dimerization, polymerizations, and incorporation of the TM-ethylene complexes in nanoporous carbon materials are also discussed. Our results are quite remarkable and open a new approach to high-capacity hydrogen-storage materials discovery.

10.
J Chem Phys ; 125(12): 121102, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17014158

RESUMO

Spin-polarized electronic and transport properties of carbon atomic chains are investigated when they are capped with magnetic transition-metal (TM) atoms like Cr or Co. The magnetic ground state of the TM-C(n)-TM chains alternates between the ferromagnetic (F) and antiferromagnetic (AF) spin configurations as a function of n. In view of the nanoscale spintronic device applications the desirable AF state is obtained for only even-n chains with Cr; conversely only odd-n chains with Co have AF ground states. When connected to appropriate metallic electrodes these atomic chains display a strong spin-valve effect. Analysis of structural, electronic, and magnetic properties of these atomic chains, as well as the indirect exchange coupling of the TM atoms through non-magnetic carbon atoms are presented.

11.
J Phys Condens Matter ; 17(25): 3823-36, 2005 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21690699

RESUMO

This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...