Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(26): eadg1671, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390208

RESUMO

Pontine nuclei (PN) neurons mediate the communication between the cerebral cortex andthe cerebellum to refine skilled motor functions. Prior studies showed that PN neurons fall into two subtypes based on their anatomic location and region-specific connectivity, but the extent of their heterogeneity and its molecular drivers remain unknown. Atoh1 encodes a transcription factor that is expressed in the PN precursors. We previously showed that partial loss of Atoh1 function in mice results in delayed PN development and impaired motor learning. In this study, we performed single-cell RNA sequencing to elucidate the cell state-specific functions of Atoh1 during PN development and found that Atoh1 regulates cell cycle exit, differentiation, migration, and survival of PN neurons. Our data revealed six previously not known PN subtypes that are molecularly and spatially distinct. We found that the PN subtypes exhibit differential vulnerability to partial loss of Atoh1 function, providing insights into the prominence of PN phenotypes in patients with ATOH1 missense mutations.


Assuntos
Cerebelo , Neurônios , Animais , Camundongos , Diferenciação Celular , Ciclo Celular , Divisão Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
3.
Elife ; 122023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36848184

RESUMO

Loss- and gain-of-function of MeCP2 causes Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), respectively. MeCP2 binds methyl-cytosines to finely tune gene expression in the brain, but identifying genes robustly regulated by MeCP2 has been difficult. By integrating multiple transcriptomics datasets, we revealed that MeCP2 finely regulates growth differentiation factor 11 (Gdf11). Gdf11 is down-regulated in RTT mouse models and, conversely, up-regulated in MDS mouse models. Strikingly, genetically normalizing Gdf11 dosage levels improved several behavioral deficits in a mouse model of MDS. Next, we discovered that losing one copy of Gdf11 alone was sufficient to cause multiple neurobehavioral deficits in mice, most notably hyperactivity and decreased learning and memory. This decrease in learning and memory was not due to changes in proliferation or numbers of progenitor cells in the hippocampus. Lastly, loss of one copy of Gdf11 decreased survival in mice, corroborating its putative role in aging. Our data demonstrate that Gdf11 dosage is important for brain function.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Síndrome de Rett , Animais , Camundongos , Envelhecimento , Modelos Animais de Doenças , Fatores de Diferenciação de Crescimento/genética , Proteínas Morfogenéticas Ósseas/genética , Proteína 2 de Ligação a Metil-CpG/genética
4.
Neuron ; 111(4): 481-492.e8, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577402

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative disease in that it is caused by a mutation in a broadly expressed protein, ATXN1; however, only select populations of cells degenerate. The interaction of polyglutamine-expanded ATXN1 with the transcriptional repressor CIC drives cerebellar Purkinje cell pathogenesis; however, the importance of this interaction in other vulnerable cells remains unknown. Here, we mutated the 154Q knockin allele of Atxn1154Q/2Q mice to prevent the ATXN1-CIC interaction globally. This normalized genome-wide CIC binding; however, it only partially corrected transcriptional and behavioral phenotypes, suggesting the involvement of additional factors in disease pathogenesis. Using unbiased proteomics, we identified three ATXN1-interacting transcription factors: RFX1, ZBTB5, and ZKSCAN1. We observed altered expression of RFX1 and ZKSCAN1 target genes in SCA1 mice and patient-derived iNeurons, highlighting their potential contributions to disease. Together, these data underscore the complexity of mechanisms driving cellular vulnerability in SCA1.


Assuntos
Ataxias Espinocerebelares , Camundongos , Animais , Ataxina-1/genética , Ataxias Espinocerebelares/metabolismo , Células de Purkinje/metabolismo , Alelos , Mutação/genética , Cerebelo/metabolismo , Fator Regulador X1/genética , Fator Regulador X1/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074918

RESUMO

MeCP2 is associated with Rett syndrome (RTT), MECP2 duplication syndrome, and a number of conditions with isolated features of these diseases, including autism, intellectual disability, and motor dysfunction. MeCP2 is known to broadly bind methylated DNA, but the precise molecular mechanism driving disease pathogenesis remains to be determined. Using proximity-dependent biotinylation (BioID), we identified a transcription factor 20 (TCF20) complex that interacts with MeCP2 at the chromatin interface. Importantly, RTT-causing mutations in MECP2 disrupt this interaction. TCF20 and MeCP2 are highly coexpressed in neurons and coregulate the expression of key neuronal genes. Reducing Tcf20 partially rescued the behavioral deficits caused by MECP2 overexpression, demonstrating a functional relationship between MeCP2 and TCF20 in MECP2 duplication syndrome pathogenesis. We identified a patient exhibiting RTT-like neurological features with a missense mutation in the PHF14 subunit of the TCF20 complex that abolishes the MeCP2-PHF14-TCF20 interaction. Our data demonstrate the critical role of the MeCP2-TCF20 complex for brain function.


Assuntos
Proteína 2 de Ligação a Metil-CpG/metabolismo , Complexos Multiproteicos/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Biomarcadores , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Mutação , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Sinapses/metabolismo , Fatores de Transcrição/genética
6.
Elife ; 92020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32159514

RESUMO

Methylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons. Loss of either protein causes overlapping and distinct features from the behavioral to molecular level. Loss of Dnmt3a causes global loss of mCH and a subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than MeCP2 loss. These data suggest that MeCP2 is responsible for reading only part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Feminino , Predisposição Genética para Doença , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Síndrome de Rett/genética
7.
Dev Dyn ; 243(9): 1055-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975120

RESUMO

BACKGROUND: Heterozygous mutations in the chromatin remodeling gene CHD7 cause CHARGE syndrome, a developmental disorder with variable craniofacial dysmorphisms and respiratory difficulties. The molecular etiologies of these malformations are not well understood. Homozygous Chd7 null mice die by E11, whereas Chd7(Gt/+) heterozygous null mice are a viable and excellent model of CHARGE. We explored skeletal phenotypes in Chd7(Gt/+) and Chd7 conditional knockout mice, using Foxg1-Cre to delete Chd7 (Foxg1-CKO) in the developing eye, ear, nose, pharyngeal pouch, forebrain, and gut and Wnt1-Cre (Wnt1-CKO) to delete Chd7 in migrating neural crest cells. RESULTS: Foxg1-CKO mice exhibited postnatal respiratory distress and death, dysplasia of the eye, concha, and frontal bone, hypoplastic maxillary shelves and nasal epithelia, and reduced tracheal rings. Wnt1-CKO mice exhibited frontal and occipital bone dysplasia, hypoplasia of the maxillary shelves and mandible, and cleft palate. In contrast, heterozygous Chd7(Gt/+) mice had apparently normal skeletal development. CONCLUSIONS: Conditional deletion of Chd7 in ectodermal and endodermal derivatives (Foxg1-Cre) or migrating neural crest cells (Wnt1-Cre) results in varied and more severe craniofacial defects than in Chd7(Gt/+) mice. These studies indicate that CHD7 has an important, dosage-dependent role in development of several different craniofacial tissues.


Assuntos
Anormalidades Múltiplas/genética , Síndrome CHARGE/genética , Anormalidades Craniofaciais/genética , Proteínas de Ligação a DNA/genética , Traqueia/anormalidades , Anormalidades Múltiplas/metabolismo , Animais , Síndrome CHARGE/metabolismo , Anormalidades Craniofaciais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout
8.
Am J Med Genet A ; 164A(8): 2062-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24719385

RESUMO

Macrocerebellum is a rare condition characterized by enlargement of the cerebellum with conservation of the overall shape and cytoarchitecture. Here, we report on a child with a distinctive constellation of clinical features including macrocerebellum, epilepsy, apparent intellectual disability, dysautonomia, gut malrotation, and poor gut motility. Oligonucleotide chromosome microarray analysis identified a 16q24.1-q24.2 deletion that included four OMIM genes (FBXO31, MAP1LC3B, JPH3, and SLC7A5). Review of prior studies describing individuals with similar or overlapping16q24.1-q24.2 deletions identified no other reports of macrocerebellum. These observations highlight a potential genetic cause of this rare disorder and raise the possibility that one or more gene(s) in the 16q24.1-q24.2 interval regulate cerebellar development.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Deleção Cromossômica , Cromossomos Humanos Par 16 , Epilepsia/genética , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Cerebelo/patologia , Pré-Escolar , Mapeamento Cromossômico , Feminino , Estudos de Associação Genética , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/diagnóstico , Imageamento por Ressonância Magnética , Fenótipo
9.
Hum Mol Genet ; 23(2): 434-48, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24026680

RESUMO

CHARGE syndrome is a multiple congenital anomaly disorder that leads to life-threatening birth defects, such as choanal atresia and cardiac malformations as well as multiple sensory impairments, that affect hearing, vision, olfaction and balance. CHARGE is caused by heterozygous mutations in CHD7, which encodes an ATP-dependent chromatin remodeling enzyme. Identification of the mechanisms underlying neurological and sensory defects in CHARGE is a first step toward developing treatments for CHARGE individuals. Here, we used mouse models of Chd7 deficiency to explore the function of CHD7 in the development of the subventricular zone (SVZ) neural stem cell niche and inner ear, structures that are important for olfactory bulb neurogenesis and hearing and balance, respectively. We found that loss of Chd7 results in cell-autonomous proliferative, neurogenic and self-renewal defects in the perinatal and mature mouse SVZ stem cell niche. Modulation of retinoic acid (RA) signaling prevented in vivo inner ear and in vitro neural stem cell defects caused by Chd7 deficiency. Our findings demonstrate critical, cooperative roles for RA and CHD7 in SVZ neural stem cell function and inner ear development, suggesting that altered RA signaling may be an effective method for treating Chd7 deficiency.


Assuntos
Síndrome CHARGE/metabolismo , Proteínas de Ligação a DNA/metabolismo , Orelha Interna/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese , Tretinoína/metabolismo , Animais , Encéfalo/patologia , Síndrome CHARGE/genética , Síndrome CHARGE/patologia , Ventrículos Cerebrais/patologia , Modelos Animais de Doenças , Orelha Interna/crescimento & desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Mutação , Bulbo Olfatório/patologia , Transdução de Sinais , Nicho de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...