Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 30(5): 1400-1416.e6, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023458

RESUMO

The use of cetuximab anti-epidermal growth factor receptor (anti-EGFR) antibodies has opened the era of targeted and personalized therapy in colorectal cancer (CRC). Poor response rates have been unequivocally shown in mutant KRAS and are even observed in a majority of wild-type KRAS tumors. Therefore, patient selection based on mutational profiling remains problematic. We previously identified methylglyoxal (MGO), a by-product of glycolysis, as a metabolite promoting tumor growth and metastasis. Mutant KRAS cells under MGO stress show AKT-dependent survival when compared with wild-type KRAS isogenic CRC cells. MGO induces AKT activation through phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin 2 (mTORC2) and Hsp27 regulation. Importantly, the sole induction of MGO stress in sensitive wild-type KRAS cells renders them resistant to cetuximab. MGO scavengers inhibit AKT and resensitize KRAS-mutated CRC cells to cetuximab in vivo. This study establishes a link between MGO and AKT activation and pinpoints this oncometabolite as a potential target to tackle EGFR-targeted therapy resistance in CRC.


Assuntos
Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Aldeído Pirúvico/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carnosina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Células Clonais , Ativação Enzimática/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Fisiológico/efeitos dos fármacos
3.
Breast Cancer Res ; 21(1): 11, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674353

RESUMO

BACKGROUND: Elevated aerobic glycolysis rate is a biochemical alteration associated with malignant transformation and cancer progression. This metabolic shift unavoidably generates methylglyoxal (MG), a potent inducer of dicarbonyl stress through the formation of advanced glycation end products (AGEs). We have previously shown that the silencing of glyoxalase 1 (GLO1), the main MG detoxifying enzyme, generates endogenous dicarbonyl stress resulting in enhanced growth and metastasis in vivo. However, the molecular mechanisms through which MG stress promotes metastasis development remain to be unveiled. METHODS: In this study, we used RNA sequencing analysis to investigate gene-expression profiling of GLO1-depleted breast cancer cells and we validated the regulated expression of selected genes of interest by RT-qPCR. Using in vitro and in vivo assays, we demonstrated the acquisition of a pro-metastatic phenotype related to dicarbonyl stress in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cellular models. Hyperactivation of MEK/ERK/SMAD1 pathway was evidenced using western blotting upon endogenous MG stress and exogenous MG treatment conditions. MEK and SMAD1 regulation of MG pro-metastatic signature genes in breast cancer cells was demonstrated by RT-qPCR. RESULTS: High-throughput transcriptome profiling of GLO1-depleted breast cancer cells highlighted a pro-metastatic signature that establishes novel connections between MG dicarbonyl stress, extracellular matrix (ECM) remodeling by neoplastic cells and enhanced cell migration. Mechanistically, we showed that these metastasis-related processes are functionally linked to MEK/ERK/SMAD1 cascade activation in breast cancer cells. We showed that sustained MEK/ERK activation in GLO1-depleted cells notably occurred through the down-regulation of the expression of dual specificity phosphatases in MG-stressed breast cancer cells. The use of carnosine and aminoguanidine, two potent MG scavengers, reversed MG stress effects in in vitro and in vivo experimental settings. CONCLUSIONS: These results uncover for the first time the key role of MG dicarbonyl stress in the induction of ECM remodeling and the activation of migratory signaling pathways, both in favor of enhanced metastatic dissemination of breast cancer cells. Importantly, the efficient inhibition of mitogen-activated protein kinase (MAPK) signaling using MG scavengers further emphasizes the need to investigate their therapeutic potential across different malignancies.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Aldeído Pirúvico/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo , Fosfatases de Especificidade Dupla/metabolismo , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise/genética , Humanos , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo , Proteína Smad1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncogene ; 37(32): 4398-4412, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29720728

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death. Therapeutic options remain very limited and are based on classical chemotherapies. Energy metabolism reprogramming appears as an emerging hallmark of cancer and is considered a therapeutic target with considerable potential. Myoferlin, a ferlin family member protein overexpressed in PDAC, is involved in plasma membrane biology and has a tumor-promoting function. In the continuity of our previous studies, we investigated the role of myoferlin in the context of energy metabolism in PDAC. We used selected PDAC tumor samples and PDAC cell lines together with small interfering RNA technology to study the role of myoferlin in energetic metabolism. In PDAC patients, we showed that myoferlin expression is negatively correlated with overall survival and with glycolytic activity evaluated by 18F-deoxyglucose positron emission tomography. We found out that myoferlin is more abundant in lipogenic pancreatic cancer cell lines and is required to maintain a branched mitochondrial structure and a high oxidative phosphorylation activity. The observed mitochondrial fission induced by myoferlin depletion led to a decrease of cell proliferation, ATP production, and autophagy induction, thus indicating an essential role of myoferlin for PDAC cell fitness. The metabolic phenotype switch generated by myoferlin silencing could open up a new perspective in the development of therapeutic strategies, especially in the context of energy metabolism.


Assuntos
Adenocarcinoma/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/patologia , Trifosfato de Adenosina/metabolismo , Autofagia/fisiologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicólise/fisiologia , Humanos , Mitocôndrias/patologia , Fosforilação Oxidativa , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/metabolismo
5.
Sci Rep ; 7(1): 11722, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916747

RESUMO

Metabolic reprogramming toward aerobic glycolysis unavoidably favours methylglyoxal (MG) and advanced glycation end products (AGEs) formation in cancer cells. MG was initially considered a highly cytotoxic molecule with potential anti-cancer value. However, we have recently demonstrated that MG enhanced tumour growth and metastasis. In an attempt to understand this dual role, we explored MG-mediated dicarbonyl stress status in four breast and glioblastoma cancer cell lines in relation with their glycolytic phenotype and MG detoxifying capacity. In glycolytic cancer cells cultured in high glucose, we observed a significant increase of the conversion of MG to D-lactate through the glyoxalase system. Moreover, upon exogenous MG challenge, glycolytic cells showed elevated amounts of intracellular MG and induced de novo GLO1 detoxifying enzyme and Nrf2 expression. Thus, supporting the adaptive nature of glycolytic cancer cells to MG dicarbonyl stress when compared to non-glycolytic ones. Finally and consistent with the pro-tumoural role of MG, we showed that low doses of MG induced AGEs formation and tumour growth in vivo, both of which can be reversed using a MG scavenger. Our study represents the first demonstration of a hormetic effect of MG defined by a low-dose stimulation and a high-dose inhibition of tumour growth.


Assuntos
Proliferação de Células , Glicólise , Hormese , Neoplasias/patologia , Aldeído Pirúvico/metabolismo , Morte Celular , Linhagem Celular Tumoral , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Lactoilglutationa Liase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo
6.
Int J Mol Sci ; 18(1)2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28117708

RESUMO

Cancer cells generally rely on aerobic glycolysis as a major source of energy. Methylglyoxal (MG), a dicarbonyl compound that is produced as a side product during glycolysis, is highly reactive and induces the formation of advanced glycation end-products that are implicated in several pathologies including cancer. All mammalian cells have an enzymatic defense against MG composed by glyoxalases GLO1 and GLO2 that converts MG to d-lactate. Colorectal cancer (CRC) is one of the most frequently occurring cancers with high morbidity and mortality. In this study, we used immunohistochemistry to examine the level of MG protein adducts, in a series of 102 CRC human tumors divided into four clinical stages. We consistently detected a high level of MG adducts and low GLO1 activity in high stage tumors compared to low stage ones suggesting a pro-tumor role for dicarbonyl stress. Accordingly, GLO1 depletion in CRC cells promoted tumor growth in vivo that was efficiently reversed using carnosine, a potent MG scavenger. Our study represents the first demonstration that MG adducts accumulation is a consistent feature of high stage CRC tumors. Our data point to MG production and detoxification levels as an important molecular link between exacerbated glycolytic activity and CRC progression.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Aldeído Pirúvico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Adulto , Idoso , Animais , Carnosina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Galinhas , Estudos de Coortes , Fluordesoxiglucose F18 , Glicólise/efeitos dos fármacos , Humanos , Lactoilglutationa Liase/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons , Pirimidinas/farmacologia
7.
Elife ; 52016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759563

RESUMO

Metabolic reprogramming toward aerobic glycolysis unavoidably induces methylglyoxal (MG) formation in cancer cells. MG mediates the glycation of proteins to form advanced glycation end products (AGEs). We have recently demonstrated that MG-induced AGEs are a common feature of breast cancer. Little is known regarding the impact of MG-mediated carbonyl stress on tumor progression. Breast tumors with MG stress presented with high nuclear YAP, a key transcriptional co-activator regulating tumor growth and invasion. Elevated MG levels resulted in sustained YAP nuclear localization/activity that could be reverted using Carnosine, a scavenger for MG. MG treatment affected Hsp90 chaperone activity and decreased its binding to LATS1, a key kinase of the Hippo pathway. Cancer cells with high MG stress showed enhanced growth and metastatic potential in vivo. These findings reinforce the cumulative evidence pointing to hyperglycemia as a risk factor for cancer incidence and bring renewed interest in MG scavengers for cancer treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Produtos Finais de Glicação Avançada/metabolismo , Glicólise , Proteínas de Choque Térmico HSP90/metabolismo , Metástase Neoplásica , Fosfoproteínas/metabolismo , Aldeído Pirúvico/metabolismo , Aerobiose , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células , Glicosilação , Humanos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição , Proteínas de Sinalização YAP
8.
Oncotarget ; 5(14): 5472-82, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24978626

RESUMO

Metabolic syndrome and type 2 diabetes are associated with increased risk of breast cancer development and progression. Methylglyoxal (MG), a glycolysis by-product, is generated through a non-enzymatic reaction from triose-phosphate intermediates. This dicarbonyl compound is highly reactive and contributes to the accumulation of advanced glycation end products. In this study, we analyzed the accumulation of Arg-pyrimidine, a MG-arginine adduct, in human breast adenocarcinoma and we observed a consistent increase of Arg-pyrimidine in cancer cells when compared with the non-tumoral counterpart. Further immunohistochemical comparative analysis of breast cancer subtypes revealed that triple negative lesions exhibited low accumulation of Arg-pyrimidine compared with other subtypes. Interestingly, the activity of glyoxalase 1 (Glo-1), an enzyme that detoxifies MG, was significantly higher in triple negative than in other subtype lesions, suggesting that these aggressive tumors are able to develop an efficient response against dicarbonyl stress. Using breast cancer cell lines, we substantiated these clinical observations by showing that, in contrast to triple positive, triple negative cells induced Glo-1 expression and activity in response to MG treatment. This is the first report that Arg-pyrimidine adduct accumulation is a consistent event in human breast cancer with a differential detection between triple negative and other breast cancer subtypes.


Assuntos
Arginina/metabolismo , Lactoilglutationa Liase/metabolismo , Pirimidinas/metabolismo , Aldeído Pirúvico/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Imuno-Histoquímica , Células MCF-7 , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...