Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2018): 20231729, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471548

RESUMO

Animals rely on a balance of personal and social information to decide when and where to move next in order to access a desired resource. The benefits from cueing on conspecifics to reduce uncertainty about resource availability can be rapidly overcome by the risks of within-group competition, often exacerbated toward low-ranked individuals. Being obligate soarers, relying on thermal updraughts to search for carcasses around which competition can be fierce, vultures represent ideal models to investigate the balance between personal and social information during foraging movements. Linking dominance hierarchy, social affinities and meteorological conditions to movement decisions of eight captive vultures, Gyps spp., released for free flights in natural soaring conditions, we found that they relied on social information (i.e. other vultures using/having used the thermals) to find the next thermal updraught, especially in unfavourable flight conditions. Low-ranked individuals were more likely to disregard social cues when deciding where to go next, possibly to minimize the competitive risk of social aggregation. These results exemplify the architecture of decision-making during flight in social birds. It suggests that the environmental context, the context of risk and the social system as a whole calibrate the balance between personal and social information use.


Assuntos
Falconiformes , Humanos , Animais , Aves , Predomínio Social
2.
J Environ Manage ; 354: 120437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402787

RESUMO

While wind power plants are an important contribution to the production of renewable energy to limit climate change, collision mortality from turbines is a danger for birds, including many protected species. To try to mitigate collision risks, automatic detection systems (ADSs) can be deployed on wind power plants; these work by detecting incoming birds using a detection/classification process and triggering a specific reaction (scaring off the bird or shutting down the turbine). Nonetheless, bird fatalities still occur at ADS-equipped wind power plants, which raises the question of the performance of these tools. To date, the lack of a transparent, peer-reviewed experimental process to compare the performance of types of ADS has meant there is no robust protocol to assess these systems. With the aim of filling this gap, we developed two standardized protocols that provide objective and unbiased assessments of the performance of different types of ADS, based on their probability of detecting/classifying birds at risk of collision. Both protocols rely on precise 3D tracking of wild birds by human observers using a laser rangefinder, and the comparison of these tracks with those detected and recorded by an ADS. The first protocol evaluates a system's general performance, generating comparable data for all types of ADS. In this protocol, detection/classification probability is estimated conditional on several abiotic and biotic environmental factors such as bird size, distance from the target, the flight angle and azimuth of the bird, as well as weather conditions. The second protocol aims to verify that the performance of an ADS installed on a given wind power plant complies with its regulatory requirements. In this protocol, detection/classification probability is specifically estimated for a given target species at a given regulatory detection distance. This protocol also estimates the proportion of time an ADS is functional on site over a year, and the proportion of reaction orders successfully operated by wind turbines. These protocols have been field-tested and made publicly available for use by government agencies and wind power plant operators.


Assuntos
Aves , Centrais Elétricas , Animais , Mudança Climática , Probabilidade , Energia Renovável , Humanos
3.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099472

RESUMO

Vision is an important sensory modality in birds, which can outperform other vertebrates in some visual abilities. However, sensitivity to achromatic contrasts - the ability to discern luminance difference between two objects or an object and its background - has been shown to be lower in birds compared with other vertebrates. We conducted a comparative study to evaluate the achromatic contrast sensitivity of 32 bird species from 12 orders using the optocollic reflex technique. We then performed an analysis to test for potential variability in contrast sensitivity depending on the corneal diameter to the axial length ratio, a proxy of the retinal image brightness. To account for potential influences of evolutionary relatedness, we included phylogeny in our analyses. We found a low achromatic contrast sensitivity for all avian species studied compared with other vertebrates (except small mammals), with high variability between species. This variability is partly related to phylogeny but appears to be independent of image brightness.


Assuntos
Visão de Cores , Sensibilidades de Contraste , Animais , Filogenia , Aves , Vertebrados , Mamíferos
4.
J Environ Manage ; 345: 118923, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688969

RESUMO

Quantifying the demographic impact of anthropogenic fatalities on animal populations is a key component of wildlife conservation. However, such quantification remains rare in environmental impact assessments (EIA) of large-infrastructure projects, partly because of the complexity of implementing demographic models. Providing user-friendly demographic tools is thus an important step to fill this gap. We developed an application called EolPop to run demographic simulations and assess population-level impacts of fatalities. This tool, freely available online, is easy to use and requires minimal input data from the user. As an output, it provides an estimate, with associated uncertainty, of the relative deficit in population size at a given time horizon. Because this impact metric is relative to a baseline scenario without fatalities, it is robust to uncertainties. We showcase the tool using examples on two species that are affected by collisions with wind turbines: Lesser kestrel (Falco naumanni) and Eurasian skylark (Alauda arvensis). After 30 years, the kestrel's population is expected to suffer a deficit of ca. 48%. In contrast, the impact on skylarks, which are already declining in France, is estimated to be fairly low (ca. 7%). EolPop aims at providing a robust quantification of the relative impact of fatalities. This tool was originally built for windfarm EIA, with a focus on birds, but it can be used to assess the demographic consequences of any type of fatalities on any species.


Assuntos
Animais Selvagens , Aves , Animais , França , Densidade Demográfica , Incerteza
5.
Curr Biol ; 33(17): 3766-3774.e3, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597520

RESUMO

An exceptional highly pathogenic avian influenza (HPAI) outbreak due to H5N1 virus genotypes belonging to clade 2.3.4.4.b has been affecting birds worldwide since autumn 2021.1,2,3 Mortality caused by viral infection has been well documented in poultry and more recently in wild birds, especially in seabird-breeding colonies.4,5,6 However, there is a critical lack of knowledge about how terrestrial birds deal with HPAI virus infections in terms of behavior and space use, especially during the breeding season.7,8,9 Understanding how birds move when they are infected could help evaluate the risk of spreading the virus at a distance among other populations of wild or domestic birds, this latter risk being especially important for commensal bird species. Through long-term GPS tracking, we described the changes in daily movement patterns of 31 adult griffon vultures Gyps fulvus in two French sites in 2022 compared with 3 previous years. In spring 2022, 21 vultures at both sites showed periods of immobility at the nest, during 5.6 days on average. Positive serological status of 2 individuals confirmed that they had been infected by HPAI viruses. Death was recorded for 3 of the 31 tracked individuals, whereas all others recovered and returned quickly to their foraging routine, although at least 9 birds failed breeding. Such immobility patterns and death rates were never observed in previous years and were not related to weather conditions. The high immobility behavior of infected birds could reduce the risks of transmission. The observed vulnerability to HPAI viruses questions the resistance of endangered vulture species worldwide if infected.


Assuntos
Falconiformes , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Humanos , Adulto , Animais , Cruzamento , Espécies em Perigo de Extinção
6.
Antibiotics (Basel) ; 12(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37508256

RESUMO

Despite the fact that the selective pressure of antibiotics on wild birds is supposed to be very weak, they are considered potential vectors of antimicrobial resistance (AMR). Obligate scavengers such as vultures can present high proportions of resistance to extended-spectrum cephalosporins (ESC) and multi-drug-resistant (MDR) bacteria, partially due to feeding stations that are provisioned with livestock carcasses from intensive farming. Here we investigated whether griffon vultures (Gyps fulvus) from two populations located in the French Alps, which feed on livestock carcasses from extensive farms, may carry such resistant bacteria. Phenotypic and genotypic characterization showed an 11.8% proportion of ESC-resistant bacteria, including five extended-spectrum beta-lactamase (ESBL)-producing and one AmpC-producing E. coli. The five ESBL-positive E. coli were clonal and all came from the same vulture population, proving their spread between animals. The ESBL phenotype was due to a blaCTX-M-15 gene located on the chromosome. Both ESBL- and AmpC-positive E. coli belonged to minor STs (ST212 and ST3274, respectively); interestingly, ST212 has already been identified in wild birds around the world, including vultures. These results suggest that actions are needed to mitigate the spread of MDR bacteria through wild birds, particularly in commensal species.

7.
Mov Ecol ; 11(1): 39, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415232

RESUMO

BACKGROUND: Bio-logging devices play a fundamental and indispensable role in movement ecology studies, particularly in the wild. However, researchers are aware of the influence that attaching devices can have on animals, particularly on their behaviour, energy expenditure and survival. The way a device is attached to an animal's body has also potential consequences for the collected data, and quantifying the type and magnitude of such potential effects is fundamental to enable researchers to combine and compare data from different studies, as much as it is to improve animal welfare. For over two decades, large terrestrial birds have been in the focus of long-term movement ecology research, employing bio-logging devices attached with different types of harnesses. However, comparative studies investigating the effects of different harness types used on these species are scarce. METHODS: In this study, we tested for potential differences in data collected by two commonly used harness types, backpack and leg-loop, on the flight performance of 10 individuals from five soaring raptor species, equipped with high resolution bio-logging devices, in the same area and time. We explored the effect of harness type on vertical speed, airspeed, glide ratio, height above sea level, distance travelled, proportion of soaring and flapping behaviour, and VeDBA (a proxy for energy expenditure) between and within individuals, all used as fine-scale measures of flight performance. RESULTS: Birds equipped with leg-loops climbed up to 0.36 ms[Formula: see text] faster, reached 25.9% greater altitudes while soaring and spent less time in active flight compared to birds equipped with backpacks, suggesting that backpack harnesses, compared to leg-loops, might cause additional drag affecting the birds' flight performance. A lower VeDBA, a lower rate of sinking while gliding and slightly higher glide ratio and airspeeds were also indicative of less drag using leg-loops, even though the effect on these parameters was comparable to inter-individual differences. CONCLUSIONS: Our results add to the existing literature highlighting the design-related advantages of leg-loops, and support the use of leg-loops as a better alternative to backpack harnesses for large soaring birds, when possible. Our study also highlights how apparently small changes in device attachment can lead to notable improvements in tagging practice, with implications for animal welfare, data interpretation and comparability.

9.
Proc Biol Sci ; 288(1958): 20211603, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34493076

RESUMO

Flying over the open sea is energetically costly for terrestrial birds. Despite this, over-water journeys of many birds, sometimes hundreds of kilometres long, are uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions, specifically wind and uplift, in subsidizing over-water flight at a global scale. We first established that ΔT, the temperature difference between sea surface and air, is a meaningful proxy for uplift over water. Using this proxy, we showed that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds are associated with favourable uplift conditions. We then analysed route selection over the open sea for five facultative soaring species, representative of all major migratory flyways. The birds maximized wind support when selecting their sea-crossing routes and selected greater uplift when suitable wind support was available. They also preferred routes with low long-term uncertainty in wind conditions. Our findings suggest that, in addition to wind, uplift may play a key role in the energy seascape for bird migration that in turn determines strategies and associated costs for birds crossing ecological barriers such as the open sea.


Assuntos
Voo Animal , Vento , Migração Animal , Animais , Aves , Água
11.
J Anim Ecol ; 90(5): 1228-1238, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786863

RESUMO

Long-distance migrations are among the most physically demanding feats animals perform. Understanding the potential costs and benefits of such behaviour is a fundamental question in ecology and evolution. A hypothetical cost of migration should be outweighed by higher productivity and/or higher annual survival, but few studies on migratory species have been able to directly quantify patterns of survival throughout the full annual cycle and across the majority of a species' range. Here, we use telemetry data from 220 migratory Egyptian vultures Neophron percnopterus, tracked for 3,186 bird months and across approximately 70% of the species' global distribution, to test for differences in survival throughout the annual cycle. We estimated monthly survival probability relative to migration and latitude using a multi-event capture-recapture model in a Bayesian framework that accounted for age, origin, subpopulation and the uncertainty of classifying fates from tracking data. We found lower survival during migration compared to stationary periods (ß = -0.816; 95% credible interval: -1.290 to -0.318) and higher survival on non-breeding grounds at southern latitudes (<25°N; ß = 0.664; 0.076-1.319) compared to on breeding grounds. Survival was also higher for individuals originating from Western Europe (ß = 0.664; 0.110-1.330) as compared to further east in Europe and Asia, and improved with age (ß = 0.030; 0.020-0.042). Anthropogenic mortalities accounted for half of the mortalities with a known cause and occurred mainly in northern latitudes. Many juveniles drowned in the Mediterranean Sea on their first autumn migration while there were few confirmed mortalities in the Sahara Desert, indicating that migration barriers are likely species-specific. Our study advances the understanding of important fitness trade-offs associated with long-distance migration. We conclude that there is lower survival associated with migration, but that this may be offset by higher non-breeding survival at lower latitudes. We found more human-caused mortality farther north, and suggest that increasing anthropogenic mortality could disrupt the delicate migration trade-off balance. Research to investigate further potential benefits of migration (e.g. differential productivity across latitudes) could clarify how migration evolved and how migrants may persist in a rapidly changing world.


Assuntos
Migração Animal , Aves , África do Norte , Animais , Teorema de Bayes , Europa (Continente) , Mar Mediterrâneo , Estações do Ano
12.
Oecologia ; 195(3): 655-666, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475782

RESUMO

We used both satellite tracking and carbon, nitrogen and sulphur stable isotopic analysis (SIA) to infer wintering ecology and habitat use of the Corsican osprey Pandion haliaetus population. A control sample of feathers from 75 individuals was collected within the osprey's northern hemisphere breeding range, to assess the SIA variability across habitat types. An experimental set of SIA on feathers of 18 Corsican adults was examined to infer wintering ground locations and habitat types used during the non-breeding period. We calibrated the SIA using GPS/GSM tracks of 12 Mediterranean adults' movements as wintering site references. We found 50% of individuals were resident and the other half migrated. Ospreys spent the winter at temperate latitudes and showed a high plasticity in habitat selection spread over the Mediterranean basin (marine bays, coastal lagoons/marshland, inland freshwater sites). Complementary to GPS tracking, SIA is, at a broad geographical scale, a reliable method to determine whether ospreys overwinter in a habitat different from that of their breeding area. This study proved that the integration of SIA and GPS/GSM tracking techniques was effective at overcoming the intrinsic limits of each method and achieving greater information for basic ecological studies of migratory birds in aquatic environments.


Assuntos
Aves , Plumas , Migração Animal , Animais , Ecossistema , Isótopos , Estações do Ano
13.
J Anat ; 236(4): 701-723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31885086

RESUMO

The head-neck system of birds is a highly complex structure that performs a variety of demanding and competing tasks. Morphofunctional adaptations to feeding specializations have previously been identified in the head and neck, but performance is also influenced by other factors such as its phylogenetic history. In order to minimize the effects of this factor, we here analyzed the anatomy of three closely related vultures that distinctly differ in feeding strategy. Vultures, as obligate scavengers, have occupied a special ecological niche by exclusively feeding on carrion. However, competition among sympatric vultures led to ecological differences such as preference of certain types of food from a carcass. Via comparative dissections we systematically described the craniocervical anatomy in the Griffon vulture (Gyps fulvus), the Cinereous vulture (Aegypius monachus) and the Hooded vulture (Necrosyrtes monachus) that exploit the same food resources in different ways. Our results revealed differences in the number of cervical vertebrae, in the morphology of the atlas-axis complex as well as in the neck musculature despite overall similarities in the musculoskeletal system. Gulpers, rippers and scrappers adopt specific postures while feeding from a carcass, but the cervical vertebral column is indispensable to position the head during all kinds of behavior. The great range of demands may explain the conservation of the overall muscle topography of the neck across the studied taxa.


Assuntos
Falconiformes/anatomia & histologia , Músculos do Pescoço/anatomia & histologia , Pescoço/anatomia & histologia , Animais , Filogenia
14.
J R Soc Interface ; 16(159): 20190486, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31594521

RESUMO

For studies of how birds control their altitude, seabirds are of particular interest because they forage offshore where the visual environment can be simply modelled by a flat world textured by waves then generating only ventral visual cues. This study suggests that optic flow, i.e. the rate at which the sea moves across the eye's retina, can explain gulls' altitude control over seas. In particular, a new flight model that includes both energy and optical invariants helps explain the gulls' trajectories during offshore takeoff and cruising flight. A linear mixed model applied to 352 flights from 16 individual lesser black backed gulls (Larus fuscus) revealed a statistically significant optic flow set-point of ca 25° s-1. Thereafter, an optic flow-based flight model was applied to 18 offshore takeoff flights from nine individual gulls. By introducing an upper limit in climb rate on the elevation dynamics, coupled with an optic flow set-point, the predicted altitude gives an optimized fit factor value of 63% on average (30-83% in range) with respect to the GPS data. We conclude that the optic flow regulation principle helps gulls to adjust their altitude over sea without having to directly measure their current altitude.


Assuntos
Altitude , Charadriiformes/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Visão Ocular , Animais , Oceanos e Mares
15.
R Soc Open Sci ; 6(1): 181440, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800386

RESUMO

Soaring flight is a remarkable adaptation to reduce movement costs by taking advantage of atmospheric uplifts. The movement pattern of soaring birds is shaped by the spatial and temporal availability and intensity of uplifts, which result from an interaction of local weather conditions with the underlying landscape structure. We used soaring flight locations and vertical speeds of an obligate soaring species, the white stork (Ciconia ciconia), as proxies for uplift availability and intensity. We then tested if static landscape features such as topography and land cover, instead of the commonly used weather information, could predict and map the occurrence and intensity of uplifts across Europe. We found that storks encountering fewer uplifts along their routes, as determined by static landscape features, suffered higher energy expenditures, approximated by their overall body dynamic acceleration. This result validates the use of static features as uplift predictors and suggests the existence of a direct link between energy expenditure and static landscape structure, thus far largely unquantified for flying animals. Our uplift availability map represents a computationally efficient proxy of the distribution of movement costs for soaring birds across the world's landscapes. It thus provides a base to explore the effects of changes in the landscape structure on the energy expenditure of soaring birds, identify low-cost movement corridors and ultimately inform the planning of anthropogenic developments.

16.
Anim Cogn ; 22(1): 49-59, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30367315

RESUMO

Raptors are usually considered to be mainly visually dependent, and the use of other sensory modalities has rarely been studied in these birds. Here, we investigated experimentally which senses (vision and/or olfaction) Turkey vultures (Cathartes aura) and Southern caracaras (Caracara plancus) use to find hidden food. First, two identical stainless-steel perforated balls, one containing a putrefied piece of meat and the other an odorless control, were presented to birds in binary choice experiments. Both species interacted more with the smelling ball than with the control, suggesting that they were attracted by the odor of the hidden meat. In a second experiment, individuals were accustomed to eat in one specifically colored ball (blue or green). In the test phase, the meat was hidden in the opposite color with respect to the one each bird had become accustomed to. Vultures still interacted more with the smelly ball disregarding the color, while caracaras interacted equally with the two balls. The prevalence of olfaction in Turkey vultures may partly explain why they are the first raptors to find carcasses in tropical forests. In contrast, caracaras forage on the ground opportunistically, a strategy where both olfaction and sight may be involved. Our experiments suggest that both species are able to use olfactory cues for foraging. However, olfaction could be the predominant sense in Turkey vultures while olfaction and sight could play an equivalent role in Southern caracaras.


Assuntos
Aves/fisiologia , Falconiformes/fisiologia , Olfato , Visão Ocular , Animais , Comportamento Apetitivo , Cor , Sinais (Psicologia) , Carne Vermelha
17.
J R Soc Interface ; 15(148)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404907

RESUMO

Vultures are thought to form networks in the sky, with individuals monitoring the movements of others to gain up-to-date information on resource availability. While it is recognized that social information facilitates the search for carrion, how this facilitates the search for updrafts, another critical resource, remains unknown. In theory, birds could use information on updraft availability to modulate their flight speed, increasing their airspeed when informed on updraft location. In addition, the stylized circling behaviour associated with thermal soaring is likely to provide social cues on updraft availability for any bird operating in the surrounding area. We equipped five Gyps vultures with GPS and airspeed loggers to quantify the movements of birds flying in the same airspace. Birds that were socially informed on updraft availability immediately adopted higher airspeeds on entering the inter-thermal glide; a strategy that would be risky if birds were relying on personal information alone. This was embedded within a broader pattern of a reduction in airspeed (approx. 3 m s-1) through the glide, likely reflecting the need for low speed to sense and turn into the next thermal. Overall, this demonstrates (i) the complexity of factors affecting speed selection over fine temporal scales and (ii) that Gyps vultures respond to social information on the occurrence of energy in the aerial environment, which may reduce uncertainty in their movement decisions.


Assuntos
Comportamento Animal/fisiologia , Falconiformes/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais
18.
J Exp Biol ; 221(Pt 23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30337356

RESUMO

Many large birds rely on thermal soaring flight to travel cross-country. As such, they are under selective pressure to minimise the time spent gaining altitude in thermal updrafts. Birds should be able to maximise their climb rates by maintaining a position close to the thermal core through careful selection of bank angle and airspeed; however, there have been few direct measurements of either parameter. Here, we apply a novel methodology to quantify the bank angles selected by soaring birds using on-board magnetometers. We couple these data with airspeed measurements to parameterise the soaring envelope of two species of Gyps vulture, from which it is possible to predict 'optimal' bank angles. Our results show that these large birds respond to the challenges of gaining altitude in the initial phase of the climb, where thermal updrafts are weak and narrow, by adopting relatively high, and conserved, bank angles (25-35 deg). The bank angle decreased with increasing altitude, in a manner that was broadly consistent with a strategy of maximising the rate of climb. However, the lift coefficients estimated in our study were lower than those predicted by theoretical models and wind-tunnel studies. Overall, our results highlight how the relevant currency for soaring performance changes within individual climbs: when thermal radius is limiting, birds vary bank angle and maintain a constant airspeed, but speed increases later in the climb in order to respond to decreasing air density.


Assuntos
Movimentos do Ar , Falconiformes/fisiologia , Voo Animal/fisiologia , Altitude , Animais , Fenômenos Biomecânicos , Asas de Animais
19.
J Exp Biol ; 221(Pt 14)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29776998

RESUMO

Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single-traits approach, and then exploring the shape of the binocular field with a morphometric approach. While the maximum binocular field width did not differ between species with different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and a large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency (e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies.


Assuntos
Falconiformes/fisiologia , Visão Binocular , Campos Visuais , Animais , Comportamento Apetitivo , Águias/fisiologia , Comportamento Alimentar , Feminino , Falcões/fisiologia , Masculino , Filogenia , Comportamento Social
20.
Biol Lett ; 14(12): 20180687, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30958250

RESUMO

Most large raptors on migration avoid crossing the sea because of the lack of atmospheric convection over temperate seas. The osprey Pandion haliaetus is an exception among raptors, since it can fly over several hundred kilometres of open water. We equipped five juvenile ospreys with GPS-Accelerometer-Magnetometer loggers. All birds were able to find and use thermal uplift while crossing the Mediterranean Sea, on average 7.5 times per 100 km, and could reach altitudes of 900 m above the sea surface. Their climb rate was 1.6 times slower than over land, and birds kept flapping most of the time while circling in the thermals, indicating that convections cells were weaker than over land. The frequency of thermal soaring was correlated with the difference between the sea surface and air temperature, indicating that atmospheric convection occurred when surface waters were warmer than the overlaying air. These observations help explain the transoceanic cosmopolitan distribution of osprey, and question the widely held assumption that water bodies represent strict barriers for large raptors.


Assuntos
Movimentos do Ar , Migração Animal , Falconiformes/fisiologia , Voo Animal/fisiologia , Altitude , Animais , Mar Mediterrâneo , Tecnologia de Sensoriamento Remoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...