Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phys Chem A ; 119(47): 11532-47, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26436757

RESUMO

The FT-microwave spectrum (6.5-26 GHz) of (chloromethyl)fluorosilane (ClCH2-SiH2F) has been recorded and 250 transitions for the parent species along with (13)C, (37)Cl, (29)Si, and (30)Si isotopologues have been assigned for trans conformer. Infrared spectra (3100 to 400 cm(-1)) of gas, solid, and the variable temperature (-100 to -60 °C) studies of the infrared spectra of the sample dissolved in xenon have been recorded. Additionally, the variable temperature (-153 to -133 °C) studies of the Raman spectra of the sample dissolved in krypton have been recorded. The enthalpy difference between the trans and gauche conformers in xenon solutions has been determined to be 109 ± 15 cm(-1) (1.47 ± 0.16 kJ mol(-1)), and in krypton solution, the enthalpy difference has been determined to be 97 ± 16 cm(-1) (1.16 ± 0.19 kJ mol(-1)) with the trans conformer as the more stable form. Approximately 46 ± 2% of the trans form is present at ambient temperature. By utilizing the microwave rotational constants of five isotopologues for trans and the structural parameters predicted from MP2(full)/6-311+G(d,p) calculations, adjusted r0 parameters have been obtained for trans conformer. The r0 structural parameter values for the trans form are for the heavy atom distances (Å): Si-F = 1.608 (3); C-Cl = 1.771 (3); Si-C = 1.884 (3); and angles (deg): ∠FSiC = 108.9 (5); ∠ClCSi = 104.9 (5). The results are discussed and compared to some related molecules.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 151: 468-79, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26151436

RESUMO

The infrared and Raman spectra (3100-50 cm(-1)) of the gas, liquid or solution, and solid have been recorded of cyanocyclopentane, c-C5H9CN. Variable temperature (-60 to -100°C) studies of the infrared spectra (3100-400cm(-1)) of the sample dissolved in liquid xenon have been carried out. From these data, both the envelope-equatorial (Eq) and Ax conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 55 ± 12 cm(-1) (0.66 ± 0.14 kJ/mol) with the Eq conformer the more stable form. The percentage of the Ax conformer is estimated to be 45±1% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing several different basis sets up to aug-cc-pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been made for the observed bands for both conformers with initial predictions by MP2(full)/6-31G(d) ab initio calculations to obtain harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The r0 structural parameter values for the Eq[Ax] form are; for the heavy atom distances (Å): CN=1.160 [1.160] (3); Cα-C=1.463 [1.463] (3); Cα-Cß, Cß'=1.543 [1.545] (3); Cß-Cγ, Cγ'=1.540 [1.541] (3); Cγ-Cγ'=1.552 [1.553] (3) and angles (°): ∠Cα-CN=179.0 [178.9] (5); ∠CßCα-C=113.1 [110.1] (5); ∠CßCαCß'=103.0 [102.1] (5); ∠CαCßCγ=104.1 [104.8] (5); ∠CßCγCγ'=106.3 [106.0] (5). The results are discussed and compared to the corresponding properties of some related molecules.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 148: 289-98, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25909903

RESUMO

The infrared and Raman spectra (3200-50 cm(-1)) of the gas, liquid or solution, and solid of fluoroacetyl chloride, FCH2COCl have been recorded. FT-microwave studies have also been carried out and 22 transitions were recorded for the trans conformer. Variable temperature (-50 to -105 °C) studies of the infrared and Raman spectra (3200-50 cm(-1)) of xenon solutions have been carried out. From these data, the trans, cis and gauche conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 159±11 cm(-1) (1.90±0.14 kJ mol(-1)) with the trans conformer the more stable form than the cis. The energy difference between the cis and gauche form is 222±18 cm(-1) (2.66±0.21 kJ/mol) and the energy difference between the trans and gauche forms is 386±13 cm(-1) (4.61±0.16 kJ/mol). Vibrational assignments have been made for the observed bands for the three conformers with initial predictions by MP2(full)/6-31G(d) ab initio calculations to obtain harmonic force constants, wavenumbers, infrared intensities, and Raman activities for the three conformers. By utilizing the microwave rotational constants of two isotopomers for trans, combined with the structural parameters predicted from MP2(full)/6-311+G(d,p) calculations, adjusted r0 parameters have been obtained for the trans conformer. The results are discussed and compared to the corresponding properties of some related molecules.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt A: 3-15, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24480667

RESUMO

The infrared and Raman spectra (3200-50 cm(-1)) of the gas, liquid or solution, and solid have been recorded of isocyanocyclopentane, c-C5H9NC. FT-microwave studies have also been carried out and 23 transitions were recorded for the envelope-axial (Ax) conformer. Variable temperature (-65 to -100 °C) studies of the infrared spectra (3200-400 cm(-1)) dissolved in liquid xenon have been carried out. From these data, both the Ax and envelope-equatorial (Eq) conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 102±10 cm(-1) (1.21±0.11 kJ mol(-1)) with the Ax conformer the more stable form. The percentage of the Eq conformer is estimated to be 38±1% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing several different basis sets up to aug-cc-pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been made for the observed bands for both conformers with initial predictions by MP2(full)/6-31G(d) ab initio calculations to obtain harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The structural parameter values for the Ax form are; for the heavy atom distances (Å): C≡N = 1.176 (3); Cα-N=1.432 (3); Cα-Cß,Cß'=1.534 (3); Cß-Cγ,Cγ'=1.542 (3); Cγ-Cγ'=1.554 (3) and angles (°):∠Cα-N≡C=177.8 (5); ∠CßCα-N=110.4 (5);

Assuntos
Ciclopentanos/química , Isocianatos/química , Micro-Ondas , Modelos Químicos , Conformação Molecular , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman , Vibração , Xenônio/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt A: 42-50, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24618201

RESUMO

Variable temperature (-60 to -100 °C) studies of ethyldichlorophosphine, CH3CH2PCl2, of the infrared spectra (4000-400 cm(-1)) dissolved in liquid xenon have been carried out. From these data, the two conformers have been identified and the enthalpy difference has been determined between the more stable trans conformer and the less stable gauche form to be 88±9 cm(-1) (1.04±0.11 kJ/mol). The percentage of abundance of the gauche conformer is estimated to be 57% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing many different basis sets up to aug-cc-pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for both conformers which have been predicted by MP2(full)/6-31G(d) ab initio calculations to predict harmonic force fields, wavenumbers of the fundamentals, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. The results are discussed and compared to the corresponding properties of some related molecules.


Assuntos
Fosfinas/química , Modelos Químicos , Conformação Molecular , Espectrofotometria Infravermelho , Análise Espectral Raman/métodos , Temperatura , Termodinâmica , Vibração , Xenônio/química
7.
J Phys Chem A ; 117(30): 6508-24, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23777483

RESUMO

The FT-microwave spectrum of cyclobutylcarboxylic acid chloride, c-C4H7C(O)Cl, has been recorded and 153 transitions for the (35)Cl and (37)Cl isotopologues have been assigned for the gauche-equatorial (g-Eq) conformation. The ground state rotational constants were determined for (35)Cl [(37)Cl]: A = 4349.8429(25) [4322.0555(56)] MHz, B = 1414.8032(25) [1384.5058(25)] MHz, and C = 1148.2411(25) [1126.3546(25)] MHz. From these rotational constants and ab initio predicted parameters, adjusted r0 parameters are reported with distances (Å) rCα-C = 1.491(4), rC═O = 1.193(3), rCα-Cß = 1.553(4), rCα-Cß' = 1.540(4), rCγ-Cß = 1.547(4), rCγ-Cß' = 1.546(4), rC-Cl = 1.801(3) and angles (deg) τCγCßCß'Cα = 30.9(5). Variable temperature (-70 to -100 °C) infrared spectra (4000 to 400 cm(-1)) were recorded in liquid xenon and the g-Eq conformer was determined the most stable form, with enthalpy differences of 91 ± 9 cm(-1) (1.09 ± 0.11 kJ/mol) for the gauche-axial (g-Ax) form and 173 ± 17 cm(-1) (2.07 ± 0.20 kJ/mol) for the trans-equatorial (t-Eq) conformer. The relative amounts at ambient temperature are 54% g-Eq, 35 ± 1% g-Ax, and 12 ± 1% t-Eq forms. Vibrational assignments have been provided for the three conformers and theoretical calculations were carried out. The results are discussed and compared to corresponding properties of related molecules.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 103: 205-15, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23261615

RESUMO

The infrared (3500-80 cm(-1)) and Raman spectra (3500-40 cm(-1)) of gas/or liquid and solid (CH(3))(2)PX with X=H (DMH), CN (DMCN) and Cl (DMCl) as well as (CD(3))(2)PH have been recorded and complete vibrational assignments are given for all three molecules. To support the spectroscopic study, ab initio calculations by the Møller-Plesset perturbation method to second order MP2(full) and density functional theory calculations by the B3LYP method have been carried out. The infrared intensities, Raman activities, vibrational frequencies and band contours have been predicted from MP2(full)/6-31G(d) calculations and these theoretical quantities are compared to experimental ones when available. By utilizing the previously reported microwave rotational constants for DMH and DMCN along with the MP2(full)/6-311+G(d,p) predicted values, adjusted r(0) structural parameters for DMH and DMCN have been determined. The heavy atom parameters for DMH are: r(0)(P-C(3,4))=1.8477(30)Å, ∠CPC=99.88(50)° and for DMCN: r(0)(N-C)=1.159(3), r(0)(C-P)=1.790(3), r(0)(P-C(4,5))=1.841(3)Å, ∠NCP=175.7(5), ∠CPC(4,5)=97.9(5) and ∠CPC=100.7(5)°. Barriers to internal rotation are reported. The experimental values are compared to the corresponding values of some similar molecules whenever possible.


Assuntos
Nitrilas/química , Fosfinas/química , Cloro/química , Halogenação , Metilação , Modelos Moleculares , Espectrofotometria Infravermelho , Análise Espectral Raman
9.
Artigo em Inglês | MEDLINE | ID: mdl-23085284

RESUMO

The infrared spectra (3500-220 cm(-1)) of cyclobutylgermane, c-C(4)H(7)GeH(3) have been recorded of the gas. Also variable temperature (-65 to -100 °C) studies of the infrared spectra (3500-400 cm(-1)) of the sample dissolved in liquid xenon were recorded and both the equatorial and axial conformers were identified. The enthalpy difference has been determined from 10 band pairs 8 temperatures to give 112 ± 11 cm(-1) (1.34 ± 0.13 kJ mol(-1)) with the equatorial conformer the more stable form. The percentage of the axial conformer present at ambient temperature is estimated to be 37 ± 1%. From ab initio calculations conformational stabilities have been predicted from both MP2(full) and density functional theory calculations from a variety of basic sets. The r(0) structure parameters have been obtained for both conformers from the previously reported rotational constants from the three isotopologues. The determined heavy atom distances for the equatorial [axial] form are (Å) Ge-C(α)=1.952(3) [1.950(3)], [Formula: see text] , [Formula: see text] [1.551(3)] and angles in degrees (°) ∠GeC(α)C(ß)=118.6(5) [113.4(5)], [Formula: see text] , ∠C(α)C(ß)C(γ)=87.8(5) [88.8(5)], [Formula: see text] and a puckering angle of 29.1(5) [25.1(5)]. Data from ab initio calculations were used to predict vibrational harmonic force constants, fundamental wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are compared to the corresponding properties of some related molecules.


Assuntos
Ciclobutanos/química , Germânio/química , Xenônio/química , Conformação Molecular , Soluções , Espectrofotometria Infravermelho , Análise Espectral Raman , Termodinâmica
10.
J Chem Phys ; 136(4): 044306, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22299870

RESUMO

The microwave spectrum (6500-18 ,500 MHz) of 1-fluoro-1-silacyclopentane, c-C(4)H(8)SiHF has been recorded and 87 transitions for the (28)Si, (29)Si, (30)Si, and (13)C isotopomers have been assigned for a single conformer. Infrared spectra (3050-350 cm(-1)) of the gas and solid and Raman spectrum (3100-40 cm(-1)) of the liquid have also been recorded. The vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twist form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but much lower energy than the planar conformer. By utilizing the microwave rotational constants for seven isotopomers ((28)Si, (29)Si, (30)Si, and four (13)C) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the twist conformer. The heavy atom distances in Å are: r(0)(SiC(2)) = 1.875(3); r(0)(SiC(3)) = 1.872(3); r(0)(C(2)C(4)) = 1.549(3); r(0)(C(3)C(5)) = 1.547(3); r(0)(C(4)C(5)) = 1.542(3); r(0)(SiF) = 1.598(3) and the angles in degrees are: [angle]CSiC = 96.7(5); [angle]SiC(2)C(4) = 103.6(5); [angle]SiC(3)C(5) = 102.9(5); [angle]C(2)C(4)C(5) = 108.4(5); [angle]C(3)C(5)C(4) = 108.1(5); [angle]F(6)Si(1)C(2) = 110.7(5); [angle]F(6)Si(1)C(3) = 111.6(5). The heavy atom ring parameters are compared to the corresponding r(s) parameters. Normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, and infrared band contours. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.

11.
Artigo em Inglês | MEDLINE | ID: mdl-22336042

RESUMO

The infrared spectra of gaseous and solid N-bromo-hexafluoro-2-propanimine, (CF(3))(2)CNBr, have been obtained from 2000 to 50 cm(-1). The vibrational assignment for the normal modes is proposed based on infrared band contours, group frequencies and normal coordinate calculations utilizing C(s) symmetry. The structural parameters have been obtained from ab initio MP2(full)/6-311+G(d,p) calculations employing the Gaussian-03 program. Additionally, the frequencies and potential energy distributions for the normal modes have been calculated with the MP2(full)/6-31G(d). All of these results are compared to the corresponding data for some similar molecules.


Assuntos
Bromo/química , Iminas/química , Propano/análogos & derivados , Propanóis/química , Espectrofotometria Infravermelho , Vibração , Luz , Propano/química , Análise Espectral Raman
12.
Artigo em Inglês | MEDLINE | ID: mdl-22178242

RESUMO

FT-microwave spectrum of allyl thiol, H(2)CCHCH(2)SH, has been recorded, and 19 transitions have been assigned for the most abundant isotopologue of Gg conformer, and the rotational constants have been determined; A=20,041.439 (4), B=2795.830 (1), C=2701.084 (1). From the determined microwave rotational constants and ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters are reported with distances (Å): rCC=1.343 (3), rC-C=1.496 (3), rC-S=1.827 (3) and angles (°) ∠CCC=123.4 (5), ∠CCS=112.5 (5), and τC(γ)C(ß)C(α)S=118.7 (5). Variable temperature (-55 to -100°C) infrared spectra (3600-400cm(-1)) were recorded of allyl thiol in liquid xenon and the Gg conformer was determined to be the most stable form. The enthalpy differences relative to the Gg form are for Cg 120±9cm(-1) (1.44±0.11kJ/mol), for Gg' 337±34cm(-1) (4.03±0.41kJ/mol), and for Gt 360±36cm(-1) (4.31±0.43kJ/mol). The relative amounts present at ambient temperature are Gg 52±1%, Cg 29±1%, Gg' 10±1%, and Gt 9±1%. The conformational stabilities have been predicted from ab initio calculations with many basis sets up to aug-cc-pVTZ and the predicted stabilities are in agreement with the experimentally determined order. Vibrational assignments are reported with support by ab initio predictions and results are discussed.


Assuntos
Compostos Alílicos/química , Compostos de Sulfidrila/química , Micro-Ondas , Conformação Molecular , Espectrofotometria Infravermelho , Análise Espectral Raman
13.
Artigo em Inglês | MEDLINE | ID: mdl-21689977

RESUMO

Infrared and Raman spectra (3500-60 cm(-1)) of gas and/or liquid and solid 1-bromo-1-silacyclopentane (c-C4H8SiBrH) have been recorded and the vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twisted form. Ab initio calculations with a variety of basis sets up to MP2(full)/6-311+G(2df,2pd) predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but approximately 900 cm(-1) (5.98 kJ/mol) lower in energy than the planar conformer. Density functional theory calculations by the B3LYP method predict slightly lower energies for the two envelope forms and considerably lower energy for the planar form compared to the MP2 predictions. By utilizing the MP2(full)/6-31G(d) calculations the force constants, frequencies, infrared intensities, band contours, Raman activities, and depolarization values have been obtained to support the vibrational assignment. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.


Assuntos
Ciclopentanos/química , Conformação Molecular , Compostos de Organossilício/química , Análise Espectral Raman , Modelos Químicos , Espectrofotometria Infravermelho , Vibração
14.
J Phys Chem A ; 115(26): 7473-83, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21619013

RESUMO

The infrared spectra of gaseous and variable-temperature liquid xenon solutions of pyrrolidine have been recorded. The enthalpy difference has been determined to be 109 ± 11 cm(-1) (1.30 ± 0.13 kJ mol(-1)) with the envelope-equatorial conformer more stable than the twist form with 37 ± 3% present at ambient temperature. Ab initio calculations utilizing various basis sets up to MP2(full)/aug-cc-pVTZ have been used to predict the conformational stabilities, energy at the equatorial-axial saddle point, and barriers to planarity. From previously reported microwave rotational constants along with MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained for both conformers. Heavy atom distances (Å) of equatorial[twist] conformer are as follows: N(1)-C(2) = 1.469(3)[1.476(3)], N(1)-C(3) = 1.469(3)[1.479(3)], C(2)-C(4) = 1.541(3)[1.556(3)], C(3)-C(5) = 1.541(3)[1.544(3)], C(4)-C(5) = 1.556(3)[1.543(3)]; and angles (deg)∠N(1)C(2)C(4) = 102.5(5)[107.6(5)], ∠N(1)C(3)C(5) = 102.5(5)[105.4(5)], ∠C(2)C(4)C(5) = 104.3(5)[104.6(5)], ∠C(3)C(5)C(4) = 104.3(5)[103.7(5)], ∠C(2)N(1)C(3) = 104.1(5)[103.9(5)], τC(2)C(4)C(5)C(3) = 0.0(5)[13.5(5)]. A complete vibrational assignment is proposed for both conformers.

15.
J Phys Chem A ; 115(11): 2297-307, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21366209

RESUMO

Infrared spectra (4000 to 400 cm(-1)) of the gas and variable temperature xenon solutions, and the Raman spectrum of the liquid have been recorded for cyclopropylisocyanate. The enthalpy difference has been determined to be 77 ± 8 cm(-1) (0.92 ± 0.10 kJ/mol) with the trans form more stable than the cis conformer with 59 ± 2% present at ambient temperature. By utilizing three rotational constants for each conformer, combined with structural parameters predicted from MP2(full)/6-311+G(d,p) calculations, the adjusted r(0) parameters have been obtained. Heavy atom structural parameters for the trans [cis] conformers are the following: distances (Å) (C-C(2,3)) = 1.509(3) [1.509(3)], (C(2)-C(3)) = 1.523(3) [1.521(3)], (C-N) = 1.412(3) [1.411(3)], (N═C) =1.214(3) [1.212(3)], (C═O) = 1.163(3) [1.164(3)]; angles (°) ∠CCN = 116.7(5) [120.1(5)], ∠CNC = 136.3(5) [137.6(5)]. The centrifugal distortion constants have been predicted from ab initio and DFT calculations and are compared to the experimentally determined values.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 79(4): 831-40, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21030298

RESUMO

Variable temperature (-55 to -100°C) studies of the infrared spectra (3500-400 cm(-1)) of fluorocyclobutane, c-C(4)H(7)F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be 496±40 cm(-1) (5.93±0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be 8±1%. The ab initio MP2(full) average predicted energy difference from a variety of basis sets is 732±47 cm(-1) (9.04±0.44 kJ/mol) and the average value of 602±20 cm(-1) from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (Å) C-F=1.383(3) [1.407(3)], C(α)-C(ß)=1.543(3) [1.546(3)], C(ß)-C(γ)=1.554(3) [1.554(3)] and angles (°) ∠C(α)C(ß)C(γ)=85.0(5) [89.2(5)], ∠C(ß)C(α)C(ß)=89.3(5) [89.2(5)], ∠F-(C(ß)C(α)C(ß))=117.4(5) [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudo-halogen substituents.


Assuntos
Ciclobutanos/química , Conformação Molecular , Vibração , Gases/química , Modelos Químicos , Rotação , Espectrofotometria Infravermelho , Termodinâmica
17.
J Phys Chem A ; 114(34): 9289-99, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20681535

RESUMO

The FT-microwave spectrum of germylcyclohexane, c-C(6)H(11)GeH(3), has been recorded, and more than 40 transitions for the (70)Ge, (72)Ge, and (74)Ge isotopomers (isotopologues) have been assigned for the chair-equatorial conformer. The heavy atom adjusted r(0) structural parameters have been determined [distances, C(gamma)-C(delta) = 1.533(3) A, C(gamma)-C(beta) = 1.532(3) A, C(alpha)-C(beta) = 1.540(3) A, C(alpha)-Ge = 1.957(3) A; angles, angleC(gamma)C(delta)C(beta) = 111.2(5) degrees , angleGeC(alpha)C(beta) = 111.1(5) degrees , with the dihedral angle angleC(gamma)C(delta)C(beta)C(alpha) = 55.6(10) degrees ]. Raman and/or infrared spectra of gas, liquid, and solid germylcyclohexane have been recorded. The temperature dependency of the Raman spectrum of the conformer pair 712 (equatorial)/683 (axial) cm(-1) gives an enthalpy difference of 453 +/- 38 cm(-1) (1.30 +/- 0.11 kcal/mol) with the chair-equatorial conformer the more stable form. At ambient temperature, the abundance of the axial conformer is 11 +/- 1%. Substituent effects on the enthalpy difference and structure of monosubstituted cyclohexanes are discussed for a number of molecules.

18.
J Phys Chem A ; 114(12): 4131-7, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20199043

RESUMO

The microwave spectra of seven isotopomers of fluoromethylsilane, CH(2)FSiH(3), in the ground vibrational state were measured and analyzed in the frequency range 18-40 GHz. The rotational and centrifugal distortion constants were evaluated by the least-squares treatment of the observed frequencies of a- and b-type R- and b-type Q-transitions. The values for the components of the dipole moment were obtained from the measurements of Stark effects from both a- and b-type transitions and the determined values are: |mu(a)| = 1.041(5), |mu(b)| = 1.311(6), and |mu(t)| = 1.674(4) D. Structural parameters have been determined and the heavy atom distances (r(0)) in Angstroms are: Si-C = 1.8942(57) and C-F = 1.4035(55) and the angle in degree, angleSiCF = 109.58(14). A semi-experimental r(e) structure was also determined from experimental ground state rotational constants and vibration-rotation constants derived from ab initio force fields. The internal torsional fundamental, SiH(3), was observed at 149.2 cm(-1) with two accompanying hot bands at 138.8 and 127.5 cm(-1). The barrier to internal rotation was obtained as 717.3(16) cm(-1) (2.051(46) kcal mol(-1)) by combining the analysis of the microwave A and E splittings and the torsional fundamental and hot band frequencies. Ab initio calculations have been carried out with full electron correlation by the second-order perturbation method with several different basis sets up to MP2/6-311+G(d,p) to obtain geometrical parameters, barriers to internal rotation, and centrifugal distortion constants. Adjusted r(0) structural parameters have been obtained by combining the ab initio MP2/6-311+G(d,p) predicted values with the determined rotational constants for the fluoride as well as with the previously reported microwave data for the chloro- and bromo- compounds. These experimental results are compared to the corresponding parameters for the carbon analogues.

19.
J Phys Chem A ; 113(35): 9675-83, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19673493

RESUMO

The infrared spectra (3200-50 cm(-1)) of the gas and solid and the Raman spectrum (3200-30 cm(-1)) of liquid and solid fluorocyclopentane, c-C5H9F, have been recorded. Additionally the infrared spectra (3200-400 cm(-1)) of liquid xenon solutions have been recorded at -65 and -95 degrees C. In all of the physical states, only the twisted C(1) conformer was detected. Ab initio calculations utilizing various basis sets up to MP2(full)/6-311+G(2df,2pd) with and without diffuse functions have been used to predict the conformational stabilities. These calculations predict only the twisted C1 conformer as the stable form. The two envelope (C(s) symmetry) forms with axial and equatorial structures were predicted to be first order saddle points with average higher energies of 75 +/- 33 and 683 +/- 44 cm(-1), respectively, from the C1 conformer but lower energies of 2442 and 1812 cm(-1), respectively, than the planar form by MP2 calculations. Similar values were obtained from the corresponding density functional theory calculations by the B3LYP method. A complete vibrational assignment is given for the twisted (C1) conformer which is supported by normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations. The adjusted r0 structural parameters have been obtained by systematically fitting the MP2(full)/6-311+G(d,p) predicted values with the rotational constants obtained from a microwave study. The determined heavy atom r0 distances in A are (C1C2) = 1.531(3), (C1C3) = 1.519(3), (C2C4) = 1.553(3), (C3C5) = 1.533(3), (C4C5) = 1.540(3), and (C1F6) = 1.411(3) and the angles in degrees are angle C3C1C2 = 105.5(5), angle C1C2C4 = 106.2(5), angle C1C3C5 = 102.9(5), angle F6C1C2 = 108.9(5), and angle F6C1C3 = 107.6(5) with a dihedral angle angle C2C4C5C3 = 25.3(3). These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.

20.
J Phys Chem A ; 113(21): 6077-82, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19456177

RESUMO

Rotational spectra for 3 silicon isotopologues (28Si, 29Si, 30Si) of cyclopropylmethylsilane (c-C3H5SiH2CH3) have been observed in natural abundance using Fourier-transform microwave spectroscopy, and the dipole moment of the most abundant (28Si) isotopologue has been determined using the Stark effect. The observed rotational constants (A = 8800.5997(9) MHz; B = 2238.6011(3) MHz; C = 2001.0579(3) MHz) and dipole moment components (mu(a) = 0.195(2) D, mu(b) = 0.674(11) D, mu(c) = 0.362(19) D, mu(total) = 0.790(13) D) for the 28Si species are consistent with ab initio predictions (MP2/6-311+G(d)) for a gauche conformation about the Si-cyclopropyl bond. All of the observed transitions were split into doublets due to internal rotation of the methyl group, allowing a determination of the V3 barrier to internal rotation of 6.671(9) kJ mol(-1) for the most abundant isotopologue. This barrier will be compared to those for other Si-CH(3) containing compounds and will be related to a partial structure determination from the available microwave and ab initio data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...