Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Commun Biol ; 3(1): 673, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188250

RESUMO

The synthesis of 3,5-dicaffeoylquinic acid (3,5-DiCQA) has attracted the interest of many researchers for more than 30 years. Recently, enzymes belonging to the BAHD acyltransferase family were shown to mediate its synthesis, albeit with notably low efficiency. In this study, a new enzyme belonging to the GDSL lipase-like family was identified and proven to be able to transform chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA, CGA) in 3,5-DiCQA with a conversion rate of more than 60%. The enzyme has been produced in different expression systems but has only been shown to be active when transiently synthesized in Nicotiana benthamiana or stably expressed in Pichia pastoris. The synthesis of the molecule could be performed in vitro but also by a bioconversion approach beginning from pure 5-CQA or from green coffee bean extract, thereby paving the road for producing it on an industrial scale.


Assuntos
Ipomoea batatas , Lipase/metabolismo , Proteínas de Plantas/metabolismo , Ácido Quínico/análogos & derivados , Proteínas Recombinantes/metabolismo , Ipomoea batatas/enzimologia , Ipomoea batatas/genética , Lipase/química , Lipase/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ácido Quínico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
3.
Molecules ; 25(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932881

RESUMO

We have used an original technology (Plant Milking Technology) based on aeroponic cultivation of plants associated with the gentle recovery of active ingredients from roots. Extraction of bioactive molecules was achieved by soaking the roots, still attached to the living plants, into a nontoxic solvent for a 2 h period. This nondestructive recovery process allows using the same root biomass for successive harvesting dates, in a recyclable way. We have applied this technology to Morus alba L. (mulberry tree), an emblematic tree of the Traditional Chinese Medicine (TCM). Trees were aeroponically grown in large-scale devices (100 m2) and were submitted to nitrogen deprivation to increase the content in active molecules (prenylated flavonoids). The Plant Milking technology applied to Morus alba L. allowed to produce an extract enriched in prenylated compounds (18-fold increase when compared to commercial root extract). Prenylated flavonoids (moracenin A and B, kuwanon C, wittiorumin F, morusin) presented a high affinity for the aged-associated collagenase enzyme, which was confirmed by activity inhibition. In accordance, M. alba extract presents efficient properties to regulate the skin matrisome, which is critical during skin aging. The benefits have been especially confirmed in vivo on wrinkle reduction, in a clinical study that involved aged women. Plant Milking technology is an optimal solution to produce active ingredients from plant roots, including trees, that meet both customer expectations around sustainability, as well as the need for an efficient production system for biotechnologists.


Assuntos
Química Farmacêutica/métodos , Fibroblastos/efeitos dos fármacos , Flavonoides/farmacologia , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Idoso , Método Duplo-Cego , Feminino , Flavonoides/isolamento & purificação , Humanos , Medicina Tradicional Chinesa , Pessoa de Meia-Idade , Morus/química , Nitrogênio/química , Extratos Vegetais/farmacologia , Prenilação , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...