Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770435

RESUMO

The present work investigates the influence of isothermal annealing on the microstructure and oxidation behavior of nanocomposite coatings. AlTiSiN/TiSiN coatings with TiSiN adhesive layer were deposited onto a high-speed steel substrate via physical vapor deposition. The coatings were investigated in the as-deposited state as well as after annealing in air at 700, 800, 900 and 1000 °C, respectively. The microstructure and morphology of the coatings were observed using scanning electron microscopy and transmission electron microscopy. The chemical composition and presence of oxidation products were studied by energy-dispersive X-ray spectroscopy. The phase identification was performed by means of X-ray diffraction. In the microstructure of the as-deposited coating, the (Ti1-xAlx)N particles were embedded in an amorphous Si3N4 matrix. TiO2 and SiO2 were found at all annealing temperatures, and Al2O3 was additionally identified at 1000 °C. It was found that, with increasing annealing temperature, the thickness of the oxide layer increased, and its morphology and chemical composition changed. At 700 and 800 °C, a Ti-Si-rich surface oxide layer was formed. At 900 and 1000 °C, an oxidized part of the coating was observed in addition to the surface oxide layer. Compared to the as-deposited sample, the oxidized samples exhibited considerably worse mechanical properties.

2.
Materials (Basel) ; 15(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36295278

RESUMO

In the present work, the microstructure, phase constitution, and corrosion behavior of binary Sn-xZn alloys (x = 5, 9 and 15 wt.%) were investigated. The alloys were prepared by induction melting of Sn and Zn lumps in argon. After melting, the alloys were solidified to form cast cylinders. The Sn-9Zn alloy had a eutectic microstructure. The Sn-5Zn and Sn-15Zn alloys were composed of dendritic (Sn) or (Zn) and eutectic. The corrosion behavior of the Sn-Zn alloys was studied in aqueous HCl (1 wt.%) and NaCl (3.5 wt.%) solutions at room temperature. Corrosion potentials and corrosion rates in HCl were significantly higher compared to NaCl. The corrosion of the binary Sn-Zn alloys was found to take place by a galvanic mechanism. The chemical composition of the corrosion products formed on the Sn-Zn alloys changed with the Zn weight fraction. Alloys with a higher concentration of Zn (Sn-9Zn, Sn-15Zn) formed corrosion products rich in Zn. The Zn-rich corrosion products were prone to spallation. The corrosion rate in the HCl solution decreased with decreasing weight fraction of Zn. The Sn-5Zn alloy had the lowest corrosion rate. The corrosion resistance in HCl could be considerably improved by reducing the proportion of zinc in Sn-Zn alloys.

3.
Materials (Basel) ; 15(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35208031

RESUMO

Biochars from wood chips (WC) and corn cobs (CC) were prepared by slow pyrolysis and used for sorption separation of erythrosine B (EB) and thioflavin T (TT) in batch experiments. Biochar-based adsorbents were extensively characterized using FTIR, XRD, SEM-EDX, and XPS techniques. The kinetics studies revealed that adsorption on external surfaces was the rate-limiting step for the removal of TT on both WC and CC biochar, while intraparticle diffusion was the rate-limiting step for the adsorption of EB. Maximal experimental adsorption capacities Qmaxexp of TT reached 182 ± 5 (WC) and 45 ± 2 mg g-1 (CC), and EB 12.7 ± 0.9 (WC) and 1.5 ± 0.4 mg g-1 (CC), respectively, thereby indicating a higher affinity of biochars for TT. The adsorption mechanism was found to be associated with π-π interaction, hydrogen bonding, and pore filling. Application of the innovative dynamic approach based on fast-field-cycling NMR relaxometry indicates that variations in the retention of water-soluble dyes could be explained by distinct water dynamics in the porous structures of WC and CC. The obtained results suggest that studied biochars will be more effective in adsorbing of cationic than anionic dyes from contaminated effluents.

4.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057128

RESUMO

Although the suitability of some biochars for contaminants' sorption separation has been established, not all potential feedstocks have been explored and characterized. Here, we physicochemically characterized cherry pit biochar (CPB) pyrolyzed from cherry pit biomass (CP) at 500 °C, and we assessed their As and Hg sorption efficiencies in aqueous solutions in comparison to activated carbon (AC). The basic physicochemical and material characterization of the studied adsorbents was carried out using pH, electrical conductivity (EC), cation exchange capacity (CEC), concentration of surface functional groups (Boehm titration), and surface area (SA) analysis; elemental C, H, N analysis; and Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). AsO43- anions and Hg2+ cations were selected as model contaminants used to test the sorption properties of the sorption materials. Characterization analyses confirmed a ninefold increase in SA in the case of CPB. The total C concentration increased by 26%, while decreases in the total H and N concentrations were observed. The values of carbonate and ash contents decreased by about half due to pyrolysis processes. The concentrations of surface functional groups of the analyzed biochar obtained by Boehm titration confirmed a decrease in carboxyl and lactone groups, while an increase in phenolic functional groups was observed. Changes in the morphology and surface functionality of the pyrolyzed material were confirmed by SEM-EDX and FTIR analyses. In sorption experiments, we found that the CPB showed better results in the sorption separation of Hg2+ than in the sorption separation of AsO43-. The sorption efficiency for the model cation increased in the order CP < CPB < AC and, for the model anion, it increased in the order CPB < CP < AC.

5.
Materials (Basel) ; 14(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576643

RESUMO

Complex metallic alloys (CMAs) are materials composed of structurally complex intermetallic phases (SCIPs). The SCIPs consist of large unit cells containing hundreds or even thousands of atoms. Well-defined atomic clusters are found in their structure, typically of icosahedral point group symmetry. In SCIPs, a long-range order is observed. Aluminum-based CMAs contain approximately 70 at.% Al. In this paper, the corrosion behavior of bulk Al-based CMAs is reviewed. The Al-TM alloys (TM = transition metal) have been sorted according to their chemical composition. The alloys tend to passivate because of high Al concentration. The Al-Cr alloys, for example, can form protective passive layers of considerable thickness in different electrolytes. In halide-containing solutions, however, the alloys are prone to pitting corrosion. The electrochemical activity of aluminum-transition metal SCIPs is primarily determined by electrode potential of the alloying element(s). Galvanic microcells form between different SCIPs which may further accelerate the localized corrosion attack. The electrochemical nobility of individual SCIPs increases with increasing concentration of noble elements. The SCIPs with electrochemically active elements tend to dissolve in contact with nobler particles. The SCIPs with noble metals are prone to selective de-alloying (de-aluminification) and their electrochemical activity may change over time as a result of de-alloying. The metal composition of the SCIPs has a primary influence on their corrosion properties. The structural complexity is secondary and becomes important when phases with similar chemical composition, but different crystal structure, come into close physical contact.

6.
Materials (Basel) ; 13(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824335

RESUMO

Microwave synthesized iron oxide nanoparticles and microparticles were used to prepare a magnetically responsive biosorbent from Rhytidiadelphus squarrosus moss for the rapid and efficient removal of Co2+ ions and thioflavin T (TT). The biocomposite was extensively characterized using Fourier transformed infrared (FTIR), XRD, SEM, and EDX techniques. The magnetic biocomposite showed very good adsorption properties toward Co2+ ions and TT e.g., rapid kinetics, high adsorption capacity (218 µmol g-1 for Co and 483 µmol g-1 for TT), fast magnetic separation, and good reusability in four successive adsorption-desorption cycles. Besides the electrostatic attraction between the oxygen functional moieties of the biomass surface and both Co2+ and TT ions, synergistic interaction with the -FeOH groups of iron oxides also participates in adsorption. The obtained results indicate that the magnetically responsive biocomposite can be a suitable, easily separable, and recyclable biosorbent for water purification.

7.
Materials (Basel) ; 13(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679787

RESUMO

In this work, the high temperature oxidation behavior of Al71Co29 and Al76Co24 alloys (concentration in at.%) is presented. The alloys were prepared by controlled arc-melting of Co and Al granules in high purity argon. The as-solidified alloys were found to consist of several different phases, including structurally complex m-Al13Co4 and Z-Al3Co phases. The high temperature oxidation behavior of the alloys was studied by simultaneous thermal analysis in flowing synthetic air at 773-1173 K. A protective Al2O3 scale was formed on the sample surface. A parabolic rate law was observed. The rate constants of the alloys have been found between 1.63 × 10-14 and 8.83 × 10-12 g cm-4 s-1. The experimental activation energies of oxidation are 90 and 123 kJ mol-1 for the Al71Co29 and Al76Co24 alloys, respectively. The oxidation mechanism of the Al-Co alloys is discussed and implications towards practical applications of these alloys at high temperatures are provided.

8.
Materials (Basel) ; 12(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121821

RESUMO

The microstructure, phase constitution, and corrosion performance of as-solidified Al70Pd25Co5 and Al74Pd12Co14 alloys (element concentrations in at.%) have been investigated in the present work. The alloys were prepared by arc-melting of Al, Pd, and Co lumps in argon. The Al74Pd12Co14 alloy was composed of structurally complex εn phase, while the Al70Pd25Co5 alloy was composed of εn and δ phases. The corrosion performance was studied by open circuit potential measurements and potentiodynamic polarization in aqueous NaCl solution (3.5 wt.%). Marked open circuit potential oscillations of the Al70Pd25Co5 alloy have been observed, indicating individual breakdown and re-passivation events on the sample surface. A preferential corrosion attack of εn was found, while the binary δ phase (Al3Pd2) remained free of corrosion. A de-alloying of Al from εn and formation of intermittent interpenetrating channel networks occurred in both alloys. The corrosion behavior of εn is discussed in terms of its chemical composition and crystal structure. The corrosion activity of εn could be further exploited in preparation of porous Pd-Co networks with possible catalytic activity.

9.
Environ Sci Pollut Res Int ; 24(1): 463-475, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27730505

RESUMO

A new post-treatment method was applied for improving the sorption efficiency of biochar-based sorbents for anionic forms of phosphorus. The Fe-impregnation through direct hydrolysis of Fe(NO3)3 was used to produce impregnated corn cob- (IBC A), garden wood waste- (IBC B), and wood chip-derived biochars (IBC C). The qualitative and quantitative effects of impregnation process on biochars were confirmed by SEM-EDX, FTIR, and ICP-MS. The analyses revealed increased concentrations of N and thus potential NO3- participation in the phosphate sorption process. Biochar surface area showed a significant decrease after the impregnation process due to the filling of micro- and mesopores with Fe maximum sorption capacity (Q max) increased by a factor of 12-50. The sorption processes of phosphates by IBC A, IBC B, and IBC C were dependent on pH, initial concentration, and time. Speciation analysis and pH-study confirmed the range of pH 4.5-5.5 as optimum values at which most of phosphorus is present in form of mononuclear H2PO4-. Batch sorption experiments showed a significant increase in the sorption capacity for phosphates by Fe impregnation of biochar as well as effectiveness and stability of this treatment. These findings indicate an option for utilizing engineered biochars as tools for the recovery of phosphorus from the aquatic environment.


Assuntos
Carvão Vegetal/química , Ferro/química , Fosfatos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...