Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lasers Surg Med ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160686

RESUMO

OBJECTIVES: The absorption of biostimulatory particulate matter following its application to fractional skin defects remains poorly understood, and even less is known about its in vivo impact in terms of tissue integration. The objectives of this study are twofold: (1) to evaluate the potential of calcium hydroxylapatite (CaHA) to penetrate through skin treated with a fractional laser; and (2) to assess the effectiveness of clinical laser scanning microscopy technologies in monitoring the effects of such treatment over time. METHODS: One area on a volunteer's arm was treated with a fractional erbium laser (Sciton Inc., Palo Alto, CA), while a second area received the same laser treatment followed by CaHA topical application. We used reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) to noninvasively image beneath the surface of the treated skin to study and monitor the effects of these treatments within 1 h of treatment and at four additional time points over a 6-week period. RESULTS: One hour posttreatment, at different depths beneath the skin surface, MPM and RCM provided similar visualizations of laser-induced channels. In skin treated by both laser and CaHA, these two imaging methods provided complementary information. RCM captured the lateral and depth distribution of CaHA microspheres and were seen as bright spheres as they became incorporated into the healing tissue. MPM, meanwhile, visualized the CaHA microparticles as dark shadow spheres within the laser-induced channels and encroaching healing tissue. Furthermore, MPM provided critical information about collagen regeneration around the microspheres, with the collagen visually marked by its distinct second harmonic generation (SHG) signal. CONCLUSIONS: This observational pilot study demonstrates that CaHA, a collagen stimulator used as a dermal filler, can not only be inserted into the dermis after fractional laser treatment but remains in the healing skin for at least 6 weeks posttreatment. The noninvasive imaging techniques RCM and MPM successfully captured the presence of CaHA microspheres mid-dermis during the healing phase. They also demonstrated new collagen production around the microspheres, highlighting the effectiveness of these imaging approaches in monitoring such treatment over time.

2.
Sci Rep ; 10(1): 18093, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093610

RESUMO

We introduce a compact, fast large area multiphoton exoscope (FLAME) system with enhanced molecular contrast for macroscopic imaging of human skin with microscopic resolution. A versatile imaging platform, FLAME combines optical and mechanical scanning mechanisms with deep learning image restoration to produce depth-resolved images that encompass sub-mm2 to cm2 scale areas of tissue within minutes and provide means for a comprehensive analysis of live or resected thick human skin tissue. The FLAME imaging platform, which expands on a design recently introduced by our group, also features time-resolved single photon counting detection to uniquely allow fast discrimination and 3D virtual staining of melanin. We demonstrate its performance and utility by fast ex vivo and in vivo imaging of human skin. With the ability to provide rapid access to depth resolved images of skin over cm2 area and to generate 3D distribution maps of key sub-cellular skin components such as melanocytic dendrites and melanin, FLAME is ready to be translated into a clinical imaging tool for enhancing diagnosis accuracy, guiding therapy and understanding skin biology.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Melaninas/metabolismo , Melanócitos/citologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Pele/citologia , Humanos , Melanócitos/metabolismo , Pele/diagnóstico por imagem , Pele/metabolismo
3.
Biomed Opt Express ; 3(5): 966-71, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22567589

RESUMO

Tissue simulating phantoms are an important part of instrumentation validation, standardization/training and clinical translation. Properly used, phantoms form the backbone of sound quality control procedures. We describe the development and testing of a series of optically turbid phantoms used in a multi-center American College of Radiology Imaging Network (ACRIN) clinical trial of Diffuse Optical Spectroscopic Imaging (DOSI). The ACRIN trial is designed to measure the response of breast tumors to neoadjuvant chemotherapy. Phantom measurements are used to determine absolute instrument response functions during each measurement session and assess both long and short-term operator and instrument reliability.

4.
J Biomed Opt ; 16(11): 116019, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22112124

RESUMO

We previously developed a self-referencing differential spectroscopic (SRDS) method to detect lesions by identifying a spectroscopic biomarker of breast cancer, i.e., the specific tumor component (STC). The SRDS method is based on the assumption of the exclusive presence of this spectroscopic biomaker in malignant disease. Although clinical results using this method have already been published, the dependence of the STC spectra on the choice of reference tissue has not yet been addressed. In this study, we explore the impact of the selection of the reference region size and location on the STC spectrum in 10 subjects with malignant breast tumors. Referencing from both contralateral and ipsilateral sides was performed. Regardless of the referencing, we are able to obtain consistent high contrast images of malignant lesions using the STC with less than 13% deviation. These results suggest that the STC measurements are independent of any type, location, and amount of normal breast tissue used for referencing. This confirms the initial assumption of the SRDS analysis, that there are specific tumor components in cancer that do not exist in normal tissue. This also indicates that bilateral measurements are not required for lesion identification using the STC method.


Assuntos
Neoplasias da Mama/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Mama/anatomia & histologia , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Feminino , Humanos , Luz , Pessoa de Meia-Idade , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA