Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 165(1): 15-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30457515

RESUMO

Effector proteins of type three secretion systems (T3SS) often require cytosolic chaperones for their stabilization, to interact with the secretion machinery and to enable effector delivery into host cells. We found that deletion of srcA, previously shown to encode a chaperone for the Salmonella pathogenicity island 2 (SPI-2) T3SS effectors SseL and PipB2, prevented the reduction of mature Major Histocompatibility Complex class II (mMHCII) from the surface of antigen-presenting cells during Salmonella infection. This activity was shown previously to be caused by the SPI-2 T3SS effector SteD. Since srcA and steD are located in the same operon on the Salmonella chromosome, this suggested that the srcA phenotype might be due to an indirect effect on SteD. We found that SrcA is not translocated by the SPI-2 T3SS but interacts directly and forms a stable complex with SteD in bacteria with a 2 : 1 stoichiometry. We found that SrcA was not required for SPI-2 T3SS-dependent, neutral pH-induced secretion of either SseL or PipB2 but was essential for secretion of SteD. SrcA therefore functions as a chaperone for SteD, explaining its requirement for the reduction in surface levels of mMHCII.


Assuntos
Proteínas de Bactérias/metabolismo , Ilhas Genômicas , Chaperonas Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Chaperonas Moleculares/genética , Óperon , Transporte Proteico , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Sistemas de Secreção Tipo III/genética
2.
Dev Cell ; 41(3): 315-329.e7, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28486133

RESUMO

RhoA-mediated regulation of myosin-II activity in the actin cortex controls the ability of cells to contract and bleb during a variety of cellular processes, including cell migration and division. Cell contraction and blebbing also frequently occur as part of the cytopathic effect seen during many different viral infections. We now demonstrate that the vaccinia virus protein F11, which localizes to the plasma membrane, is required for ROCK-mediated cell contraction from 2 hr post infection. Curiously, F11-induced cell contraction is dependent on RhoC and not RhoA signaling to ROCK. Moreover, RhoC-driven cell contraction depends on the upstream inhibition of RhoD signaling by F11. This inhibition prevents RhoD from regulating its downstream effector Pak6, alleviating the suppression of RhoC by the kinase. Our observations with vaccinia have now demonstrated that RhoD recruits Pak6 to the plasma membrane to antagonize RhoC signaling during cell contraction and blebbing.


Assuntos
Movimento Celular/fisiologia , Quinases Ativadas por p21/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
3.
Cell Host Microbe ; 20(5): 584-595, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27832589

RESUMO

The SPI-2 type III secretion system (T3SS) of intracellular Salmonella enterica translocates effector proteins into mammalian cells. Infection of antigen-presenting cells results in SPI-2 T3SS-dependent ubiquitination and reduction of surface-localized mature MHC class II (mMHCII). We identify the effector SteD as required and sufficient for this process. In Mel Juso cells, SteD localized to the Golgi network and vesicles containing the E3 ubiquitin ligase MARCH8 and mMHCII. SteD caused MARCH8-dependent ubiquitination and depletion of surface mMHCII. One of two transmembrane domains and the C-terminal cytoplasmic region of SteD mediated binding to MARCH8 and mMHCII, respectively. Infection of dendritic cells resulted in SteD-dependent depletion of surface MHCII, the co-stimulatory molecule B7.2, and suppression of T cell activation. SteD also accounted for suppression of T cell activation during Salmonella infection of mice. We propose that SteD is an adaptor, forcing inappropriate ubiquitination of mMHCII by MARCH8 and thereby suppressing T cell activation.


Assuntos
Proteínas de Bactérias/metabolismo , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Evasão da Resposta Imune , Salmonella typhimurium/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Linhagem Celular , Células Dendríticas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Ativação Linfocitária , Camundongos , Ligação Proteica , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Linfócitos T/imunologia
4.
Mol Cell ; 63(2): 261-276, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27425412

RESUMO

Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Escherichia, and Shigella, as well as ubiquitin/ubiquitin-like cross-reactive enzymes in Chlamydia, Rickettsia, and Xanthomonas. Five crystal structures, including ubiquitin/ubiquitin-like complexes, explain substrate specificities and redefine relationships across the CE clan. Importantly, this work identifies novel family members and provides key discoveries among previously reported effectors, such as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquitin binding region. Furthermore, accessory domains regulate properties such as subcellular localization, as exemplified by a ubiquitin-binding domain in Salmonella Typhimurium SseL. Our work both highlights and explains the functional adaptations observed among diverse CE clan proteins.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chlamydia trachomatis/enzimologia , Biologia Computacional , Sequência Conservada , Bases de Dados de Proteínas , Escherichia coli/enzimologia , Células HeLa , Humanos , Legionella/enzimologia , Modelos Moleculares , Mutação , Filogenia , Conformação Proteica , Rickettsia/enzimologia , Salmonella typhimurium/enzimologia , Shigella flexneri/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato , Proteases Específicas de Ubiquitina/química , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Xanthomonas campestris/enzimologia
5.
Infect Immun ; 84(7): 2149-2158, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27185791

RESUMO

Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S Typhimurium delays epithelial cell turnover in the intestine.


Assuntos
Citocinese , Interações Hospedeiro-Patógeno , Salmonella typhimurium/fisiologia , Animais , Ciclo Celular , Proliferação de Células , Feminino , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Camundongos , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Sistemas de Secreção Tipo III/metabolismo
6.
J Cell Biol ; 209(1): 163-80, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25847537

RESUMO

Cell migration is frequently accompanied by changes in cell morphology (morphodynamics) on a range of spatial and temporal scales. Despite recent advances in imaging techniques, the application of unbiased computational image analysis methods for morphodynamic quantification is rare. For example, manual analysis using kymographs is still commonplace, often caused by lack of access to user-friendly, automated tools. We now describe software designed for the automated quantification of cell migration and morphodynamics. Implemented as a plug-in for the open-source platform, ImageJ, ADAPT is capable of rapid, automated analysis of migration and membrane protrusions, together with associated fluorescently labeled proteins, across multiple cells. We demonstrate the ability of the software by quantifying variations in cell population migration rates on different extracellular matrices. We also show that ADAPT can detect and morphologically profile filopodia. Finally, we have used ADAPT to compile an unbiased description of a "typical" bleb formed at the plasma membrane and quantify the effect of Arp2/3 complex inhibition on bleb retraction.


Assuntos
Movimento Celular , Software , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Apoptose , Forma Celular , Rastreamento de Células , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Pseudópodes/ultraestrutura , Análise de Célula Única
7.
Cell Host Microbe ; 14(1): 51-62, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23870313

RESUMO

The vaccinia F11 protein promotes viral spread by modulating the cortical actin cytoskeleton by inhibiting RhoA signaling via an unknown mechanism. PDZ domains are widely conserved protein interaction modules whose occurrence in viral proteins is unprecedented. We found that F11 contains a central PDZ-like domain that is required to downregulate RhoA signaling and enhance viral spread. The PDZ-like domain interacts with the PDZ binding motif of the Rho GTPase-activating protein (GAP) Myosin-9A. In the absence of Myosin-9A, RhoA signaling is not inhibited, resulting in fewer actin tails and reduced virus release concomitant with less viral spread. The loss of Myosin-9A GAP activity or its ability to bind F11 also reduces actin tail formation. Furthermore, the ability of Myosin-9A to promote viral spread depends on F11 binding RhoA. Thus, F11 acts as a functional PDZ-containing scaffolding protein to inhibit RhoA signaling by binding Myosin-9A.


Assuntos
Miosinas/metabolismo , Transdução de Sinais , Vaccinia virus/metabolismo , Vacínia/enzimologia , Proteínas Virais/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Regulação para Baixo , Interações Hospedeiro-Patógeno , Humanos , Miosinas/genética , Domínios PDZ , Ligação Proteica , Vacínia/genética , Vacínia/virologia , Vaccinia virus/química , Vaccinia virus/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteína rhoA de Ligação ao GTP/genética
8.
Cell Host Microbe ; 12(3): 346-59, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22980331

RESUMO

During their egress, newly assembled vaccinia virus particles fuse with the plasma membrane and enhance their spread by inducing Arp2/3-dependent actin polymerization. Investigating the events surrounding vaccinia virus fusion, we discovered that vaccinia transiently recruits clathrin in a manner dependent on the clathrin adaptor AP-2. The recruitment of clathrin to vaccinia dramatically enhances the ability of the virus to induce actin-based motility. We demonstrate that clathrin promotes clustering of the virus actin tail nucleator A36 and host N-WASP, which activates actin nucleation through the Arp2/3 complex. Increased clustering enhances N-WASP stability, leading to more efficient actin tail initiation and sustained actin polymerization. Our observations uncover an unexpected role for clathrin during virus spread and have important implications for the regulation of actin polymerization.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Multimerização Proteica , Vaccinia virus/patogenicidade , Complexo 2-3 de Proteínas Relacionadas à Actina , Células HeLa , Humanos , Proteína Neuronal da Síndrome de Wiskott-Aldrich
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...