Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2309494, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441357

RESUMO

Semiconductor colloidal quantum wells (CQWs) have emerged as a promising class of gain materials to be used in colloidal lasers. Although low gain thresholds are achieved, the required high gain coefficient levels are barely met for the applications of electrically-driven lasers which entails a very thin gain matrix to avoid charge injection limitations. Here, "giant" CdSe@CdS colloidal quantum well heterostructures of 9.5 to 17.5 monolayers (ML) in total with corresponding vertical thickness from 3.0 to 5.8 nm that enable record optical gain is shown. These CQWs achieve ultra-high material gain coefficients up to ≈140 000 cm-1 , obtained by systematic variable stripe length (VSL) measurements and independently validated by transient absorption (TA) measurements, owing to their high number of states. This exceptional gain capacity is an order of magnitude higher than the best levels reported for the colloidal quantum dots. From the dispersion of these quantum wells, low threshold amplified spontaneous emission in water providing an excellent platform for optofluidic lasers is demonstrated. Also, employing these giant quantum wells, whispering gallery mode (WGM) lasing with an ultra-low threshold of 8 µJ cm-2 is demonstrated. These findings indicate that giant CQWs offer an exceptional platform for colloidal thin-film lasers and in-solution lasing applications.

2.
Nano Lett ; 23(24): 11802-11808, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085099

RESUMO

We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at ∼530 nm when excited with a blue light at ∼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of ∼140 times at a specific angular direction and a total enhancement of ∼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of ∼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications.

3.
ACS Nano ; 17(20): 19981-19992, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37610378

RESUMO

The strength of electrostatic interactions (EIs) between electrons and holes within semiconductor nanocrystals profoundly affects the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range and fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi two-dimensional core-shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a doubly gradient (DG) core-shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy. Moreover, these exciton-concentration-engineered DG NPLs also exhibit a near-unity quantum yield, high photo- and thermal stability, and considerably suppressed self-absorption. As proof-of-concept demonstrations, highly efficient color converters and high-performance light-emitting diodes (external quantum efficiency: 16.9%, maximum luminance: 43,000 cd/m2) have been achieved based on the DG NPLs. This work thus provides insights into the development of high-performance colloidal optoelectronic device applications.

4.
ACS Nano ; 17(8): 7636-7644, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36912794

RESUMO

Colloidal quantum wells (CQWs), also known as nanoplatelets (NPLs), are exciting material systems for numerous photonic applications, including lasers and light-emitting diodes (LEDs). Although many successful type-I NPL-LEDs with high device performance have been demonstrated, type-II NPLs are not fully exploited for LED applications, even with alloyed type-II NPLs with enhanced optical properties. Here, we present the development of CdSe/CdTe/CdSe core/crown/crown (multi-crowned) type-II NPLs and systematic investigation of their optical properties, including their comparison with the traditional core/crown counterparts. Unlike traditional type-II NPLs such as CdSe/CdTe, CdTe/CdSe, and CdSe/CdSexTe1-x core/crown heterostructures, here the proposed advanced heterostructure reaps the benefits of having two type-II transition channels, resulting in a high quantum yield (QY) of 83% and a long fluorescence lifetime of 73.3 ns. These type-II transitions were confirmed experimentally by optical measurements and theoretically using electron and hole wave function modeling. Computational study shows that the multi-crowned NPLs provide a better-distributed hole wave function along the CdTe crown, while the electron wave function is delocalized in the CdSe core and CdSe crown layers. As a proof-of-concept demonstration, NPL-LEDs based on these multi-crowned NPLs were designed and fabricated with a record high external quantum efficiency (EQE) of 7.83% among type-II NPL-LEDs. These findings are expected to induce advanced designs of NPL heterostructures to reach a fascinating level of performance, especially in LEDs and lasers.

5.
ACS Nano ; 17(3): 2411-2420, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36706108

RESUMO

We measure the ultrafast spectral diffusion, vibronic dynamics, and energy relaxation of a CdSe colloidal quantum wells (CQWs) system at room temperature using two-dimensional electronic spectroscopy (2DES). The energy relaxation of light-hole (LH) excitons and hot carriers to heavy-hole (HH) excitons is resolved with a time scale of ∼210 fs. We observe the equilibration dynamics between the spectroscopically accessible HH excitonic state and a dark state with a time scale of ∼160 fs. We use the center line slope analysis to quantify the spectral diffusion dynamics in HH excitons, which contains an apparent sub-200 fs decay together with oscillatory features resolved at 4 and 25 meV. These observations can be explained by the coupling to various lattice phonon modes. We further perform quantum calculations that can replicate and explain the observed dynamics. The 4 meV mode is observed to be in the near-critically damped regime and may be mediating the transition between the bright and dark HH excitons. These findings show that 2DES can provide a comprehensive and detailed characterization of the ultrafast spectral properties in CQWs and similar nanomaterials.

6.
Nanoscale ; 14(40): 14895-14901, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36106594

RESUMO

Although achieving optical gain using aqueous solutions of colloidal nanocrystals as a gain medium is exceptionally beneficial for bio-optoelectronic applications, the realization of optical gain in an aqueous medium using solution-processed nanocrystals has been extremely challenging because of the need for surface modification to make nanocrystals water dispersible while still maintaining their gain. Here, we present the achievement of optical gain in an aqueous medium using an advanced architecture of CdSe/CdS@CdxZn1-xS core/crown@gradient-alloyed shell colloidal quantum wells (CQWs) with an ultralow threshold of ∼3.4 µJ cm-2 and an ultralong gain lifetime of ∼2.6 ns. This demonstration of optical gain in an aqueous medium is a result of the carefully heterostructured CQWs having large absorption cross-section and gain cross-section in addition to inherently slow Auger recombination in these CQWs. Furthermore, we show low-threshold in-water amplified spontaneous emission (ASE) from these aqueous CQWs with a threshold of 120 µJ cm-2. In addition, we demonstrate a whispering gallery mode laser with a low threshold of ∼30 µJ cm-2 obtained by incorporating films of CQWs by exploiting layer-by-layer approach on a fiber. The observation of low-threshold optical gain with ultralong gain lifetime presents a significant step toward the realization of advanced optofluidic colloidal lasers and their continuous-wave pumping.

7.
Adv Sci (Weinh) ; 7(20): 2001864, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101875

RESUMO

Here, a facile approach to enhance the performance of solar-driven photoelectrochemical (PEC) water splitting is described by means of the synergistic effects of a hybrid network of plasmonic Au nanoparticles (NPs) decorated on multiwalled carbon nanotubes (CNTs). The device based on TiO2-Au:CNTs hybrid network sensitized with colloidal CdSe/(CdSe x S1- x )5/(CdS)1 core/alloyed shell quantum dots (QDs) yields a saturated photocurrent density of 16.10 ± 0.10 mA cm-2 [at 1.0 V vs reversible hydrogen electrode (RHE)] under 1 sun illumination (AM 1.5G, 100 mW cm-2), which is ≈26% higher than the control device. The in-depth mechanism behind this significant improvement is revealed through a combined experimental and theoretical analysis for QDs/TiO2-Au:CNTs hybrid network and demonstrates the multifaceted impact of plasmonic Au NPs and CNTs: i) hot-electron injection from Au NPs into CNTs and TiO2; ii) near-field enhancement of the QDs absorption and carrier generation/separation processes by the plasmonic Au NPs; iii) enhanced photoinjected electron transport due to the highly directional pathways offered by CNTs. These results provide fundamental insights on the properties of QDs/TiO2-Au:CNTs hybrid network, and highlights the possibility to improve the performance of other solar technologies.

8.
ACS Appl Mater Interfaces ; 12(32): 36301-36310, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32666797

RESUMO

Despite significant advances in the development of high-efficiency and stable quantum dot (QD) solar cells (QDSCs), recent synthetic and fabrication routes still require improvements to render QDSCs commercially feasible. Here, we describe a low-cost, industrially viable fabrication method of QDSCs under an ambient atmosphere (humid air and room temperature) using stable, high-quality, and small-sized PbS QDs prepared with low-cost, greener precursors [i.e., thioacetamide (TAA)] compared to the widely used bis(trimethylsilyl)sulfide [(TMS)2S], at low temperatures without requiring any stringent conditions. The low reaction temperature, medium reactivity of TAA, and diffusion-controlled particle growth adopted in this approach provide an opportunity to synthesize ultrasmall (emission peak ∼700 nm) to larger PbS QDs (emission peak ∼1050 nm). This also enables well-controlled large-scale (multigram) synthesis with a rough estimated production cost of PbS of 8.11 $ per gram (based on materials cost), which is the lowest among the available PbS QDs produced using wet chemistry routes. QDSCs fabricated using 3.25 nm PbS QDs (bandgap 1.29 eV) under ambient conditions yield a high circuit current density (Jsc) of 32.4 mA/cm2 (one of the highest values of Jsc ever reported) with a power conversion efficiency of 7.8% under 1 sun simulated sunlight at AM 1.5 G (100 mW/cm2). These devices exhibit better photovoltaic performance compared to devices fabricated with more traditional PbS QDs synthesized with (TMS)2S under an ambient atmosphere, confirming the quality of PbS QDs produced with our method. The diffusion-controlled TAA-based synthetic route developed herein is found to be very promising for synthesizing size-tunable PbS QDs for photovoltaic and other optoelectronic applications.

9.
Nano Lett ; 20(8): 6005-6011, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32584048

RESUMO

Solid-state room-temperature lasing with tunability in a wide range of wavelengths is desirable for many applications. To achieve this, besides an efficient gain material with a tunable emission wavelength, a high quality-factor optical cavity is essential. Here, we combine a film of colloidal CdSe/CdZnS core-shell nanoplatelets with square arrays of nanocylinders made of titanium dioxide to achieve optically pumped lasing at visible wavelengths and room temperature. The all-dielectric arrays support bound states in the continuum (BICs), which result from lattice-mediated Mie resonances and boast infinite quality factors in theory. In particular, we demonstrate lasing from a BIC that originates from out-of-plane magnetic dipoles oscillating in phase. By adjusting the diameter of the cylinders, we tune the lasing wavelength across the gain bandwidth of the nanoplatelets. The spectral tunability of both the cavity resonance and nanoplatelet gain, together with efficient light confinement in BICs, promises low-threshold lasing with wide selectivity in wavelengths.

10.
Talanta ; 194: 501-506, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609564

RESUMO

Glutathione (GSH), a key player in various cellular processes including detoxification, anti-oxidant defense system and cell proliferation is also a potentially good coating material for luminescent quantum dots. GSH is oxidized to oxidized glutathione (GSSG) under oxidative stress and then reduced back by glutathione reductase (GR) enzyme to maintain the balance of GSH/GSSG ratio. In this frame, GSH stabilized quantum dots (QDs) have never been evaluated as GR substrate. Here, GSH coated Ag2S QDs, luminescent in the medical window, were prepared and their GR activity were tested. We have shown by spectrophotometric methods that GSH-Ag2S acted as a substrate-analog for GR enzyme that had lower activity compared to the original substrate GSSG. These results provide a new perspective in the evaluation of QDs in medical applications, enzyme activity or level detection as well as possible means to study enzymes.


Assuntos
Glutationa Redutase/metabolismo , Glutationa/química , Glutationa/metabolismo , Pontos Quânticos/química , Compostos de Prata/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...