Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dev Biol ; 11(3)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37489332

RESUMO

How head patterning is regulated in vertebrates is yet to be understood. In this study, we show that frog embryos injected with Noggin at different blastula and gastrula stages had their head development sequentially arrested at different positions. When timed BMP inhibition was applied to BMP-overexpressing embryos, the expression of five genes: xcg-1 (a marker of the cement gland, which is the front-most structure in the frog embryo), six3 (a forebrain marker), otx2 (a forebrain and mid-brain marker), gbx2 (an anterior hindbrain marker), and hoxd1 (a posterior hindbrain marker) were sequentially fixed. These results suggest that the vertebrate head is patterned from anterior to posterior in a progressive fashion and may involve timed actions of the BMP signaling.

2.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272563

RESUMO

This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article 'Positional Information and the Spatial Pattern of Differentiation'. This tribute relates to another one of his ideas: his early 'Progress Zone' timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology.


Assuntos
Padronização Corporal/genética , Diferenciação Celular/genética , Extremidades/crescimento & desenvolvimento , Vertebrados/genética , Animais , Aniversários e Eventos Especiais , Regulação da Expressão Gênica no Desenvolvimento/genética , Publicações
3.
Front Cell Dev Biol ; 7: 257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850338

RESUMO

The vertebrate anterior-posterior (A-P = craniocaudal) axis is evidently made by a timing mechanism. Evidence has accumulated that tentatively identifies the A-P timer as being or involving Hox temporal collinearity (TC). Here, I focus on the two current competing models based on this premise. Common features and points of dissent are examined and a common model is distilled from what remains. This is an attempt to make sense of the literature.

4.
Genesis ; 57(7-8): e23296, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31021058

RESUMO

This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.


Assuntos
Padronização Corporal , Proteínas de Homeodomínio/genética , Retinoides/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Transdução de Sinais
5.
Front Cell Dev Biol ; 6: 102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30234110

RESUMO

A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox-Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo's main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via "decision points," separating different domains on the axis.

6.
J Biosci ; 43(2): 375-390, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29872025

RESUMO

During early embryonic development, the vertebrate main body axis is segmented from head-to-tail into somites. Somites emerge sequentially from the presomitic mesoderm (PSM) as a consequence of oscillatory waves of genetic activity, called somitogenesis waves. Here, we discuss the implications of the dynamic patterns of early X-Delta-2 expression in the prospective somites (somitomeres) of Xenopus laevis. We report that right somitomeres normally emerge before left to form chiral structures (i.e. structures having clockwise or counter-clockwise handedness). From our observations, we infer that somitogenesis waves are normally counter-clockwise spirals, a novel dynamic mechanism for the control of handedness development in Xenopus. We propose that the same mechanism could control handedness development in all vertebrate embryos, providing a dynamical basis for the current asymmetric molecular transport model for generating left-right asymmetry.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/crescimento & desenvolvimento , Somitos/crescimento & desenvolvimento , Xenopus laevis/crescimento & desenvolvimento
7.
Bioessays ; 39(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28699180

RESUMO

We show the vertebrate anterior -posterior axis is made by time space translation (TST). 1/ TST of Hox temporal to spatial collinearity makes the trunk part of the axis. 2/TST continues into the head. 3/ TST is mediated by collinear Hox-Hox interactions. 4/ 'Decision points' involving signalling pathways separate axial domains.


Assuntos
Padronização Corporal/fisiologia , Vertebrados/embriologia , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Morfogênese/genética , Morfogênese/fisiologia , Vertebrados/genética
9.
PLoS One ; 12(4): e0175287, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28399140

RESUMO

Investigating regulation and function of the Hox genes, key regulators of positional identity in the embryo, opened a new vista in developmental biology. One of their most striking features is collinearity: the temporal and spatial orders of expression of these clustered genes each match their 3' to 5' order on the chromosome. Despite recent progress, the mechanisms underlying collinearity are not understood. Here we show that ectopic expression of 4 different single Hox genes predictably induces and represses expression of others, leading to development of different predictable specific sections of the body axis. We use ectopic expression in wild-type and noggin-dorsalised (Hox-free) Xenopus embryos, to show that two Hox-Hox interactions are important. Posterior induction (induction of posterior Hox genes by anterior ones: PI), drives Hox temporal collinearity (Hox timer), which itself drives anteroposterior (A-P) patterning. Posterior prevalence (repression of anterior Hox genes by posterior ones: PP) is important in translating temporal to spatial collinearity. We thus demonstrate for the first time that two collinear Hox interactions are important for vertebrate axial patterning. These findings considerably extend and clarify earlier work suggesting the existence and importance of PP and PI, and provide a major new insight into genesis of the body axis.


Assuntos
Padronização Corporal/genética , Genes Homeobox , Vertebrados/genética , Animais , Xenopus/embriologia
10.
Proc Natl Acad Sci U S A ; 110(49): 19826-31, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24255112

RESUMO

The excitable cells of Dictyostelium discoideum show traveling waves of signaling and generate a variety of complex wave forms during their morphogenesis. Important among these wave forms is the 3D spiral or scroll wave, which has been proposed previously to have a twisted variant: the "turbine wave." Herein we argue that a D. discoideum scroll or concentric wave territory containing prespore and prestalk cell types can undergo "dislocation": a wave field that initially controls aggregation of a whole developing population of Dictyostelium cells splits into two. This process leads to discontinuity between two connected domains of wave propagation and to specific phenomena, including high-frequency concentric pacemaker activity by the slime mold's scroll-wave tip. The resulting morphogenetic events reveal a unique mechanism in morphogenesis.


Assuntos
Movimento Celular/fisiologia , Dictyostelium/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Vertebrados/embriologia , Animais , Somitos/fisiologia
11.
Dev Growth Differ ; 53(9): 982-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22150153

RESUMO

We present an evolutionary approach to dissecting conserved developmental mechanisms. We reason that important mechanisms for making the bodyplan will act early, to generate the major features of the body and that they will be conserved in evolution across many metazoa, and thus, that they will be available in very different animals. This led to our specific approach of microarrays to screen for very early conserved developmental regulators in parallel in an insect, Drosophila and a vertebrate, Xenopus. We screened for the earliest conserved targets of the ectopically expressed hox gene Hoxc6/Antennapedia in both species and followed these targets up, using in situ hybridization, in the Xenopus system. The results indicate that relatively few of the early Hox target genes are conserved: these are mainly involved in the specification of the antero-posterior body axis and in gastrulation.


Assuntos
Proteína do Homeodomínio de Antennapedia/genética , Proteína do Homeodomínio de Antennapedia/metabolismo , Evolução Biológica , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Animais , Proteína do Homeodomínio de Antennapedia/biossíntese , Padronização Corporal/genética , Drosophila/embriologia , Drosophila/genética , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Genômica/métodos , Proteínas de Homeodomínio/biossíntese , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/biossíntese
12.
PLoS One ; 6(3): e18010, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21464931

RESUMO

Hox transcription factors provide positional information during patterning of the anteroposterior axis. Hox transcription factors can co-operatively bind with PBC-class co-factors, enhancing specificity and affinity for their appropriate binding sites. The nuclear localisation of these co-factors is regulated by the Meis-class of homeodomain proteins. During development of the zebrafish hindbrain, Meis3 has previously been shown to synergise with Hoxb1 in the autoregulation of Hoxb1. In Xenopus XMeis3 posteriorises the embryo upon ectopic expression. Recently, an early temporally collinear expression sequence of Hox genes was detected in Xenopus gastrula mesoderm (see intro. P3). There is evidence that this sequence sets up the embryo's later axial Hox expression pattern by time-space translation. We investigated whether XMeis3 is involved in regulation of this early mesodermal Hox gene expression. Here, we present evidence that XMeis3 is necessary for expression of Hoxd1, Hoxb4 and Hoxc6 in mesoderm during gastrulation. In addition, we show that XMeis3 function is necessary for the progression of gastrulation. Finally, we present evidence for synergy between XMeis3 and Hoxd1 in Hoxd1 autoregulation in mesoderm during gastrulation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Mesoderma/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Regulação para Baixo/genética , Ectoderma/metabolismo , Gastrulação/genética , Proteínas de Homeodomínio/genética , Regulação para Cima/genética , Proteínas de Xenopus/genética
13.
Int J Dev Biol ; 55(10-12): 899-908, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22252486

RESUMO

Hox collinearity is a spectacular phenomenon that has excited life scientists since its discovery in 1978. Two mechanisms have been proposed to explain the spatially sequential pattern of Hox gene expression in animal embryonic development: interactions among Hox genes, or the progressive opening of chromatin in the Hox clusters, from 3' to 5'. A review of the evidence across different species and developmental stages points to the universal involvement of trans-acting factors and cell-cell interactions. The evidence focuses attention on interactions between Hox genes and on the vertebrate somitogenesis clock. These novel conclusions open new perspectives for the field.


Assuntos
Proteínas de Homeodomínio/metabolismo , Animais , Cromatina/química , Cromatina/metabolismo , Biologia do Desenvolvimento , Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Humanos , Modelos Anatômicos , Modelos Biológicos , Modelos Genéticos , Estrutura Terciária de Proteína , Transdução de Sinais , Especificidade da Espécie , Fatores de Tempo , Transcrição Gênica , Xenopus
14.
Int J Dev Biol ; 54(4): 599-608, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20209433

RESUMO

The hindbrain region of the vertebrate central nervous system (CNS) presents a complex regionalisation. It consists of 7-8 distinct morphological segments called rhombomeres, each with a unique identity provided by combinations of transcription factors. One class of signalling molecules, retinoids, have been shown to be crucial for hindbrain patterning through direct trans-activation of Hox genes in the neuroectoderm. However, how this morphogen acts is not yet fully understood. Here, we show that the retinoid receptor antagonist AGN193109 causes a posterior hindbrain defect in Xenopus, comparable to that seen in other vertebrates. We show that this defect arises during gastrulation. Blocking endogenous retinoid activity during gastrulation causes downregulation of the most 3' Hox genes (paralogues 1-5) in gastrula neuroectoderm, but their initial activation in gastrula non-organiser mesoderm is unaffected. Similar results were obtained in avian embryos: Vitamin A-deficient quail embryos have defective expression of 3 Hox genes (i.e. Hoxb1, Hoxb4 ) in the neural tube, but their early expression in the primitive streak and emerging paraxial and lateral mesoderm is not affected. In Xenopus, depletion of retinoids from mesoderm by targeted injection of mRNAs for the retinoic acid catabolising enzyme xCYP26 and the cellular retinoic acid binding protein xCRABP blocks 3 Hox gene expression in the overlying neuroectoderm. We propose that the gastrula non-organiser mesoderm and its later derivative, the paraxial mesoderm, is the source of a retinoid, which acts as a transforming (caudalising) signal for the future posterior hindbrain.


Assuntos
Mesoderma/metabolismo , Placa Neural/metabolismo , Retinoides/metabolismo , Transdução de Sinais/fisiologia , Animais , Comunicação Celular/genética , Sistema Nervoso Central/metabolismo , Gástrula/metabolismo , Gastrulação , Expressão Gênica , Genes Homeobox , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retinoides/genética , Rombencéfalo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Xenopus/genética , Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
15.
Int J Dev Biol ; 54(1): 55-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19876844

RESUMO

Hox proteins are homeobox containing transcription factors that play important roles in patterning the presumptive central nervous system and the axial mesoderm in the early vertebrate embryo. Hox genes are first expressed during gastrula stages and recent studies suggest that their function goes beyond their role as patterning determinants. To improve our understanding of the role of Hox proteins during early vertebrate development, we designed a strategy to identify target genes of the zebrafish hoxb1b using overexpression and whole-genome microarray analysis. We directly compared the hoxb1b microarray data with those resulting from heterologous over-expression of the Xenopus XhoxD1 gene in zebrafish embryos. Both genes are the first expressed hox genes in their respective native embryos and display similar spatial expression patterns. The zebrafish transcriptome was analysed prior to the start of the expression of the endogenous hoxb1b gene and we observed extensive overlap between the hoxb1b and XhoxD1 putative downstream genes suggesting evolutionary functional conservation between these hox genes. Furthermore, genes encoding transcription factors and proteins that are known to be involved in cell adhesion and movement were over-represented among the candidate downstream genes, indicating the involvement of the developmentally earliest expressed hox genes in transcriptional networks and cell movement processes.


Assuntos
Movimento Celular/fisiologia , Embrião não Mamífero/metabolismo , Gastrulação , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Células Cultivadas , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
Dev Dyn ; 239(1): 126-39, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19623617

RESUMO

Hox transcription factors play an essential role in patterning the anteroposterior axis during embryogenesis and exhibit a complex array of spatial and temporal patterns of expression. Their earliest onset of expression in vertebrates is during gastrulation in a temporally collinear sequence in the presomitic/ventrolateral mesoderm, and it is not clear which upstream signal transduction events initiate this expression. Using Xenopus, we present evidence that Xwnt8 is necessary for initiation of this collinear sequence by activating Hox-1 expression in three Hox clusters: hoxd, hoxa, and hoxb. All three labial genes appear to be direct targets of canonical Wnt signaling through Tcf/Lef. In addition, Xwnt8 loss- and gain-of-function leads to indirect regulation of other Hox genes: Hoxb4, Hoxd4, Hoxa7, Hoxc6, and Hoxc8. These findings shed new light on the early role of Wnt8 as well as of a proposed WNT gradient in patterning the Xenopus central nervous system (Kiecker and Niehrs [2001] Development 128:4189-4201).


Assuntos
Padronização Corporal/fisiologia , Sistema Nervoso Central/embriologia , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Wnt/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Primers do DNA/genética , Hibridização In Situ , Microinjeções , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
17.
Dev Biol ; 332(1): 82-9, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19409887

RESUMO

It is generally assumed that the characteristic deregionalized body plan of species with a snake-like morphology evolved through a corresponding homogenization of Hox gene expression domains along the primary axis. Here, we examine the expression of Hox genes in snake embryos and show that a collinear pattern of Hox expression is retained within the paraxial mesoderm of the trunk. Genes expressed at the anterior and most posterior, regionalized, parts of the skeleton correspond to the expected anatomical boundaries. Unexpectedly however, also the dorsal (thoracic), homogenous rib-bearing region of trunk, is regionalized by unconventional gradual anterior limits of Hox expression that are not obviously reflected in the skeletal anatomy. In the lateral plate mesoderm we also detect regionalized Hox expression yet the forelimb marker Tbx5 is not restricted to a rudimentary forelimb domain but is expressed throughout the entire flank region. Analysis of several Hox genes in a caecilian amphibian, which convergently evolved a deregionalized body plan, reveals a similar global collinear pattern of Hox expression. The differential expression of posterior, vertebra-modifying or even rib-suppressing Hox genes within the dorsal region is inconsistent with the homogeneity in vertebral identity. Our results suggest that the evolution of a deregionalized, snake-like body involved not only alterations in Hox gene cis-regulation but also a different downstream interpretation of the Hox code.


Assuntos
Anfíbios/embriologia , Padronização Corporal , Proteínas de Homeodomínio/genética , Serpentes/embriologia , Azul Alciano/metabolismo , Anfíbios/genética , Animais , Antraquinonas/metabolismo , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Lagartos/embriologia , Lagartos/genética , Mesoderma/metabolismo , Camundongos , Serpentes/genética , Somitos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
18.
Dev Dyn ; 238(3): 755-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19235717

RESUMO

Hox genes are key players in defining positional information along the main body axis of vertebrate embryos. In Xenopus laevis, Hoxc6 was the first homeobox gene isolated. It encodes two isoforms. We analyzed in detail their spatial and temporal expression pattern during early development. One major expression domain of both isoforms is the spinal cord portion of the neural tube. Within the spinal cord and its populations of primary neurons, Hox genes have been found to play a crucial role for defining positional information. Here we report that a loss-of-function of either one of the Hoxc6 products does not affect neural induction, the expression of general neural markers is not modified. However, Hoxc6 does widely affect the formation of primary neurons within the developing neural tissue. Manipulations of Hoxc6 expression severly changes the expression of the neuronal markers N-tubulin and Islet-1. Formation of primary neurons and formation of cranial nerves are affected. Hence, Hoxc6 functions are not restricted to the expected role in anterior-posterior pattern formation, but they also regulate N-tubulin, thereby having an effect on the initial formation of primary neurons in Xenopus laevis embryos.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Neurogênese/genética , Transcrição Gênica/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Biomarcadores , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/genética , Placa Neural/embriologia , Placa Neural/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Receptores Notch/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética
19.
PLoS One ; 3(1): e1396, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18167555

RESUMO

BACKGROUND: The Hox genes are involved in patterning the anterior-posterior axis. In addition to the protein coding Hox genes, the miR-10, miR-196 and miR-615 families of microRNA genes are conserved within the vertebrate Hox clusters. The members of the miR-10 family are located at positions associated with Hox-4 paralogues. No function is yet known for this microRNA family but the genomic positions of its members suggest a role in anterior-posterior patterning. METHODOLOGY/PRINCIPAL FINDINGS: Using sensor constructs, overexpression and morpholino knockdown, we show in Zebrafish that miR-10 targets HoxB1a and HoxB3a and synergizes with HoxB4 in the repression of these target genes. Overexpression of miR-10 also induces specific phenotypes related to the loss of function of these targets. HoxB1a and HoxB3a have a dominant hindbrain expression domain anterior to that of miR-10 but overlap in a weaker expression domain in the spinal cord. In this latter domain, miR-10 knockdown results in upregulation of the target genes. In the case of a HoxB3a splice variant that includes miR-10c within its primary transcript, we show that the microRNA acts in an autoregulatory fashion. CONCLUSIONS/SIGNIFICANCE: We find that miR-10 acts to repress HoxB1a and HoxB3a within the spinal cord and show that this repression works cooperatively with HoxB4. As with the previously described interactions between miR-196 and HoxA7 and Hox-8 paralogues, the target genes are located in close proximity to the microRNA. We present a model in which we postulate a link between the clustering of Hox genes and post-transcriptional gene regulation. We speculate that the high density of transcription units and enhancers within the Hox clusters places constraints on the precision of the transcriptional control that can be achieved within these clusters and requires the involvement of post-transcriptional gene silencing to define functional domains of genes appropriately.


Assuntos
Inativação Gênica , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Proteínas de Peixe-Zebra/genética , Animais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra
20.
J Comp Neurol ; 506(2): 211-23, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18022953

RESUMO

Knockout of the Nkx2.1 (Titf-1) homeobox gene in the mouse leads to severe malformation and size reduction of the basal telencephalon/preoptic area and basal hypothalamus, indicating an important role of this gene in forebrain patterning. Here we show that abrogation of the orthologous gene in the frog Xenopus laevis by way of morpholino knockdown also affects the relative size of major regions in both the telencephalon (subpallium versus pallium) and diencephalon (hypothalamus versus thalamus). Remarkably, while a similar effect on the telencephalon was noted previously in Nkx2.1-knockout mice, the effect on the diencephalon seems to be specific for Xenopus. This difference may be explained by the partially dissimilar expression of the orthologous genes in the forebrain of Xenopus and mouse. In both species Nkx2.1 is expressed in the basal telencephalon/preoptic area and basal hypothalamus, but in Xenopus this gene is additionally expressed in the alar hypothalamus. Phylogenetic comparison of Nkx2.1 expression in the forebrain suggests that the expression in the basal telencephalon-preoptic region and alar hypothalamus appeared in the transition from jawless to jawed vertebrates, but the alar hypothalamic expression was later dramatically reduced during evolution to birds and mammals. Our study suggests that changes in the regulation of Nkx2.1 expression have played an important role on the evolution of forebrain development, and emphasizes the potential of the combined analysis of expression and function of master control genes in different vertebrates for unraveling the origin of brain complexity and diversity.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/fisiologia , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Proteínas de Xenopus/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Proteínas Nucleares , Fator Nuclear 1 de Tireoide , Fatores de Transcrição , Proteínas de Xenopus/deficiência , Proteínas de Xenopus/fisiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...