Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; : 1-12, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37191651

RESUMO

Continuous monitoring of pathogens finds applications in environmental, medical, and food industry settings. Quartz crystal microbalance (QCM) is one of the promising methods for real-time detection of bacteria and viruses. QCM is a technology that utilizes piezoelectric principles to measure mass and is commonly used in detecting the mass of chemicals adhering to a surface. Due to its high sensitivity and rapid detection times, QCM biosensors have attracted considerable attention as a potential method for detecting infections early and tracking the course of diseases, making it a promising tool for global public health professionals in the fight against infectious diseases. This review first provides an overview of the QCM biosensing method, including its principle of operation, various recognition elements used in biosensor creation, and its limitations and then summarizes notable examples of QCM biosensors for pathogens, focusing on microfluidic magnetic separation techniques as a promising tool in the pretreatment of samples. The review explores the use of QCM sensors in detecting pathogens in various samples, such as food, wastewater, and biological samples. The review also discusses the use of magnetic nanoparticles for sample preparation in QCM biosensors and their integration into microfluidic devices for automated detection of pathogens and highlights the importance of accurate and sensitive detection methods for early diagnosis of infections and the need for point-of-care approaches to simplify and reduce the cost of operation.

2.
Talanta ; 239: 123074, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34809985

RESUMO

A Surface Plasmon Resonance (SPR) aptasensor was developed for the detection of Brucella melitensis (B. melitensis) in milk samples. Brucellosis is a bacterial zoonotic disease with global distribution caused mostly by contaminated milk or their products. Aptamers recognizing B. melitensis were selected following a whole bacteria-SELEX procedure. Two aptamers were chosen for high affinity and high specificity. The high affinity aptamer (B70 aptamer) was immobilized on the surface of magnetic silica core-shell nanoparticles for initial purification of the target bacteria cells from milk matrix. Another aptamer, highly specific for B. melitensis cells (B46 aptamer), was used to prepare SPR sensor chips for sensitive determination of Brucella in eluted samples from magnetic purification since direct injection of milk samples to SPR sensor chips is known for a high background unspecific signal. Thus, we integrated a quick and efficient magnetic isolation step for subsequent instant detection of B. melitensis contamination in one ml of milk sample by SPR with a LOD value as low as 27 ± 11 cells.


Assuntos
Aptâmeros de Nucleotídeos , Brucella melitensis , Animais , Limite de Detecção , Leite , Ressonância de Plasmônio de Superfície
3.
J Hazard Mater ; 418: 126364, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329020

RESUMO

Benzalkonium chloride (BAC) is a common ingredient of disinfectants used for industrial, medical, food safety and domestic applications. It is a common pollutant detected in surface and wastewaters to induce adverse effects on Human health as well as aquatic and terrestrial life forms. Since disinfectant use is essential in combatting against microorganisms, the best approach to reduce ecotoxicity level is to restrict BAC use. We report here that encapsulation of BAC in mesoporous silica nanoparticles can provide an efficient strategy for inhibition of microbial activity with lower than usual concentrations of disinfectants. As a proof-of-concept, Listeria monocytogenes was evaluated for minimum inhibitory concentration (MIC) of nanomaterial encapsulated BAC. Aptamer molecular gate structures provided a specific targeting of the disinfectant to Listeria cells, leading to high BAC concentrations around bacterial cells, but significantly reduced amounts in total. This strategy allowed to inhibition of BAC resistant Listeria strains with 8 times less the usual disinfectant dose. BAC encapsulated and aptamer functionalized silica nanoparticles (AptBACNP) effectively killed only target bacteria L. monocytogenes, but not the non-target cells, Staphylococcus aureus or Escherichia coli. AptBACNP was not cytotoxic to Human cells as determined by in vitro viability assays.


Assuntos
Desinfetantes , Listeria monocytogenes , Nanopartículas , Compostos de Benzalcônio , Desinfetantes/toxicidade , Poluição Ambiental , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade
4.
Acta Pharmacol Sin ; 31(9): 1085-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20711226

RESUMO

Since its discovery in early 1990s, hypoxia inducible factor 1 (HIF-1) has been increasingly recognized for its key role in transcriptional control of more than a hundred genes that regulate a wide-spectrum of cellular functional events, including angiogenesis, vasomotor control, glucose and energy metabolism, erythropoiesis, iron homeostasis, pH regulation, cell proliferation and viability. Evidence accumulated during the past 7 years suggests a critical role for HIF-1alpha in mediating cardioprotection. The purpose of our present article is to provide an updated overview on this important regulator of gene expression in the cellular stress-responsive and adaptive process. We have particularly emphasized the involvement of HIF-1 in the induction of cardioprotective molecules, such as inducible nitric oxide synthase (iNOS), hemeoxygenase 1 (HO-1), and erythropoietin (EPO), which in turn alleviate myocardial damages caused by harmful events such as ischemia-reperfusion injury. Despite these advances, further in-depth studies are needed to elucidate the possible coordination or interaction between HIF-1alpha and other key transcription factors in regulating protein expression that leads to cardioprotection.


Assuntos
Cardiotônicos/metabolismo , Regulação da Expressão Gênica , Fator 1 Induzível por Hipóxia/metabolismo , Miocárdio/metabolismo , Animais , Humanos , Fator 1 Induzível por Hipóxia/genética , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...