Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Genet ; 14: 1026601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741324

RESUMO

This 2-year study evaluated differences in circadian parameters obtained from measures of core body temperatures using telemetric reticulo-rumen and rectal devices during two winter feeding regimes in western Canada. The study also estimated phenotypic correlations and genetic parameters associated with circadian parameters and other production traits in each feeding regime. Each year, 80 weaned steer calves (initial age: 209 ± 11 days; BW: 264 ± 20 kg) from the same cohort were tested over two successive regimes, Fall-Winter (FW) and Winter-Spring (WS) at Lanigan, Saskatchewan, Canada. The steers received forage-based rations in both regimes where the individual feed intake was measured with automatic feeding units. During the trial, the reticulo-rumen (RTMP) and rectal (RCT) temperatures were simultaneously measured every 5 min using telemetric devices. These were used to calculate the circadian parameters (Midline Estimating Statistic Of Rhythms, amplitude, and acrophase/peak time) for both temperature measures. Growth and efficiency performance traits were also determined for all steers. Each steer was assigned into inefficient, neutral, and efficient classes based on the SD of the residual feed intake (RFI), residual gain (RG), and residual intake and gain (RIG) within each year and feeding regime. Higher (p < 0.0003) RTMP and rectal temperature MESORs were observed in the Fall-Winter compared to the Winter-Spring regime. While the two test regimes were different (p < 0.05) for the majority of the RTMP or RCT temperature parameters, they did not differ (p > 0.10) with the production efficiency profiles. The heritability estimates were higher in FW (0.78 ± 0.18 vs. 0.56 ± 0.26) than WS (0.50 ± 0.18 vs. 0.47 ± 0.22) for the rumen and rectal MESORs, respectively. There were positive genetic correlations between the two regimes for the RTMP (0.69 ± 0.21) and RCT (0.32 ± 0.59). There was a negative correlation (p < 0.001) between body temperature and ambient temperature. The high heritability estimates and genetic correlations for rumen and rectal temperature parameters demonstrate their potential as beef genetic improvement tools of economic traits associated with the parameters. However, there are limited practical implications of using only the core-body temperature as a proxy for production efficiency traits for beef steers during winter.

4.
Appl Environ Microbiol ; 78(4): 1203-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156428

RESUMO

Limited knowledge of the structure and activities of the ruminal bacterial community prevents the understanding of the effect of population dynamics on functional bacterial groups and on host productivity. This study aimed to identify particular bacteria associated with host feed efficiency in steers with differing diets and residual feed intake (RFI) using culture-independent methods: PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis. PCR-DGGE profiles were generated from the ruminal fluid of 55 steers fed a low-energy-density diet and then switched to a high-energy-density diet. Bacterial profile comparisons by multivariate statistical analysis showed a trend only for RFI-related clusters on the high-energy diet. When steers (n = 19) belonging to the same RFI group under both diets were used to identify specific bacterial phylotypes related to feed efficiency traits, correlations were detected between dry matter intake, average daily gain, and copy numbers of the 16S rRNA gene of Succinivibrio sp. in low-RFI (efficient) steers, whereas correlations between Robinsoniella sp. and RFI (P < 0.05) were observed for high-RFI (inefficient) animals. Eubacterium sp. differed significantly (P < 0.05) between RFI groups that were only on the high-energy diet. Our work provides a comprehensive framework to understand how particular bacterial phylotypes contribute to differences in feed efficiency and ultimately influence host productivity, which may either depend on or be independent from diet factors.


Assuntos
Bactérias/genética , Biota , Dieta , Metagenoma , Rúmen/microbiologia , Animais , Carga Bacteriana , Bovinos , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/genética , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...