Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(21): 4542-4553, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341284

RESUMO

RNA interference (RNAi) is a post-translational regulatory mechanism that controls gene expression in plants. This process can be artificially induced by double-stranded RNA (dsRNA) molecules with sequence homology to target mRNAs. Exogenously applied dsRNA on leaves has been shown to silence virulence genes of fungi and viruses, conferring protection to plants. Coupling dsRNA to nanoparticles has been demonstrated to prolong the silencing effect. The ability of exogenous dsRNA to silence endogenous genes in plants is currently under debate, mainly due to the difficulty in delivering dsRNA into plant tissues and organs. Our study aims to develop a method based on the exogenous application of dsRNA on tomato flowers for silencing endogenous genes controlling ovary growth. Two methods of dsRNA delivery into tomato flower buds (i.e., pedicel soaking and injection) were compared to test their efficacy in silencing the tomato Aux/IAA9 (SlIAA9) gene, which encodes for a known repressor of ovary growth. We examined the silencing effect of dsRNA alone and coupled to layered double hydroxide (LDHs) nanoparticles. We found that injection into the pedicel led to the silencing of SlIAA9 and the efficacy of the method was confirmed by choosing a different ovary growth repressor gene (SlAGAMOUS-like 6; SlAGL6). The coupling of dsRNA to LDHs increased the silencing effect in the case of SlIAA9. Silencing of the two repressors caused an increase in ovary size only when flower buds were treated with dsRNA coupled to LDHs. RNA-Seq of small RNAs showed that induction of RNAi was caused by the processing of injected dsRNA. In this work, we demonstrate for the first time that exogenous dsRNA coupled to LDHs can induce post-transcriptional gene silencing in the young tomato ovary by injection into the flower pedicel. This method represents a silencing tool for the study of the molecular changes occurring during the early stages of ovary/fruit growth as a consequence of downregulation of target genes, without the need to produce transgenic plants stably expressing RNAi constructs.

2.
Eur Heart J Suppl ; 24(Suppl E): E4-E11, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35991621

RESUMO

Sympathetic activation has been long appreciated exclusively as a fundamental compensatory mechanism of the failing heart and, thus, welcome and to be supported. In the initial clinical phases of heart failure (HF), the sympathetic nervous system overdrive plays a compensatory function aimed at maintaining an adequate cardiac output despite the inotropic dysfunction affecting the myocardium. However, when the sympathetic reflex response is exaggerated it triggers a sequence of unfavourable remodelling processes causing a further contractile deterioration that unleashes major adverse cardiovascular consequences, favouring the HF progression and the occurrence of fatal events. Eventually, the sympathetic nervous system in HF was demonstrated to be a 'lethality factor' and thus became a prominent therapeutic target. The existence of an effective highly specialized intracardiac neuronal network immediately rules out the old concept that sympathetic activation in HF is merely the consequence of a drop in cardiac output. When a cardiac damage occurs, such as myocardial ischaemia or a primary myocardial disorder, the adaptive capability of the system may be overcame, leading to excessive sympatho-excitation coupled with attenuation till to abolishment of central parasympathetic drive. Myocardial infarction causes, within a very short time, both a functional and anatomical remodelling with a diffuse up-regulation of nerve growth factor (NGF). The subsequent nerve sprouting signal, facilitated by a rise in the levels of NGF in the left stellate ganglion and in the serum, triggers an increase in cardiac nerve density in both peri-infarct and non-infarcted areas. Finally, NFG production decreases over time, supposedly as an adaptative response to the prolonged exposure to sympathetic overactivity, leading in the end to a reduction in sympathetic nerve density. Accordingly, NGF levels were markedly reduced in patients with severe congestive heart failure. The kidney is the other key player of the sympathetic response to HF as it indeed reacts to under-perfusion and to loop diuretics to preserve filtration at the cost of many pathological consequences on its physiology. This vicious loop ultimately participates to the chronic and disruptive sympathetic overdrive. In conclusion, sympathetic activation is the natural physiological consequence to life stressors but also to any condition that may harm our body. It is the first system of reaction to any potential life-threatening event. However, in any aspect of life over reaction is never effective but, in many instances, is, actually, life threatening. One for all is the case of ischaemia-related ventricular fibrillation which is, strongly facilitated by sympathetic hyperactivity. The take home message? When, in a condition of harm, everybody is yelling failure is just around the corner.

3.
Plant Sci ; 266: 19-26, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29241563

RESUMO

The TCMP-1 and TCMP-2 genes of tomato code for metallocarboxypeptidase inhibitors and show sequential, tightly regulated expression patterns during flower and fruit development. In particular, TCMP-1 is highly expressed in flower buds before anthesis, while TCMP-2 in ripe fruits. Their expression pattern suggests that they might play a role in fruit development. Here, to investigate their function, we altered their endogenous levels by generating transgenic plants harbouring a chimeric gene expressing the TCMP-1 coding sequence under the control of the TCMP-2 promoter. The expression of the transgene caused an earlier fruit setting with no visible phenotypic effects on plant and fruit growth. The altered TCMP-1 regulation determines an increased level of TCMP-1 in the fruit and unexpected changes in the levels of both TCMPs in flower buds before anthesis, suggesting a mechanism of transcriptional cross-regulation. We in silico analysed TCMPs promoter regions for the presence of common cis acting elements related to ovary/fruit development and we found that both promoters contain putative binding sites for INNER NO OUTER (INO), a transcription factor implicated in ovule development. By chromatin immunoprecipitation, we proved that INO binds to TCMP-1 and TCMP-2 promoters, thereby representing a candidate regulatory factor for coordinated control of TCMPs.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...