Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Deliv ; 17(1): 23-32, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774000

RESUMO

Introduction: Current therapies of neurodegenerative or neurometabolic diseases are, to a large extent, hampered by the inability of drugs to cross the blood-brain barrier (BBB). This very tight barrier severely restricts the entrance of molecules from the blood into the brain, especially macromolecular substances (i.e. neurotrophic factors, enzymes, proteins, as well as genetic materials). Due to their size, physicochemical properties, and instability, the delivery of these materials is particularly difficult.Areas covered: Recent research showed that biocompatible and biodegradable nanoparticles possessing tailored surface properties can enable a delivery of drugs and specifically of macromolecules across the blood-brain barrier by using carrier systems of the brain capillary endothelium (Trojan Horse strategy). In the present review, the state-of-art of nanoparticle-mediated drug delivery of different macromolecular substances into the brain following intravenous injection is summarized, and different nanomedicines that are used to enable the transport of neurotrophic factors and enzymes across the blood-brain barrier into the CNS are critically analyzed.Expert opinion: Brain delivery of macromolecules by an intravenous application using nanomedicines is now a growing area of interest which could be really translated into clinical application if dedicated effort will be given to industrial scale-up production.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos/química , Substâncias Macromoleculares/metabolismo , Nanopartículas/química , Implantes Absorvíveis , Animais , Materiais Biocompatíveis , Transporte Biológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Terapia de Reposição de Enzimas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Injeções Intravenosas , Nanomedicina , Fator de Crescimento Neural/metabolismo
2.
Gene Ther ; 21(12): 1021-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25253445

RESUMO

Two uptake mechanisms were identified for PEGylated DNA polyplex biodistribution to the liver. At a low polyplex dose, a rapid-uptake mechanism dominates, resulting in 60% capture by liver in 5 min, due to a saturable receptor-mediated process. Rapid-uptake led to the fast metabolism of polyplexes by liver (t1/2 = 2.1 h), correlating with a 1-µg pGL3 polyplex dose losing full transfection competency after 4 h in the liver. Dose escalation of either polyplex or poly(ethylene glycol) (PEG) peptide led to the saturation of rapid-uptake and revealed a delayed-uptake mechanism for polyplexes by liver. Delayed-uptake was characterized by the slower liver accumulation of 40% of the polyplex dose over 40 min, followed by slow metabolism (t1/2 = 15 h) and an extended time (12 h) for a 1-µg pGL3 polyplex dose, remaining fully transfection competent in the liver. The delayed-uptake mechanism is consistent with polyplexes crossing liver fenestrated endothelial cells to reach steady state in the space of Disse. The results describe how to control polyplex biodistribution to liver to avoid rapid-uptake and metabolism, in favor of delayed-uptake, to preserve polyplex transfection competency in the liver for up to 12 h.


Assuntos
DNA/farmacocinética , Fígado/metabolismo , Polietilenoglicóis/farmacocinética , Animais , DNA/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Plasmídeos/genética , Polietilenoglicóis/química , Distribuição Tecidual , Transfecção/métodos
3.
Gene Ther ; 18(1): 23-37, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20720577

RESUMO

A novel class of PEGylated polyacridine peptides was developed that mediate potent stimulated gene transfer in the liver of mice. Polyacridine peptides, (Acr-X)(n)-Cys-polyethylene glycol (PEG), possessing 2-6 repeats of Lys-acridine (Acr) spaced by either Lys, Arg, Leu or Glu, were Cys derivatized with PEG (PEG(5000 kDa)) and evaluated as in vivo gene transfer agents. An optimal peptide of (Acr-Lys)(6)-Cys-PEG was able to bind to plasmid DNA (pGL3) with high affinity by polyintercalation, stabilize DNA from metabolism by DNAse and extend the pharmacokinetic half-life of DNA in the circulation for up to 2 h. A tail vein dose of PEGylated polyacridine peptide pGL3 polyplexes (1 µg in 50 µl), followed by a stimulatory hydrodynamic dose of normal saline at times ranging from 5 to 60 min post-DNA administration, led to a high level of luciferase expression in the liver, equivalent to levels mediated by direct hydrodynamic dosing of 1 µg of pGL3. The results establish the unique properties of PEGylated polyacridine peptides as a new and promising class of gene delivery peptides that facilitate reversible binding to plasmid DNA, protecting it from DNase in vivo resulting in an extended circulatory half-life, and release of transfection-competent DNA into the liver to mediate a high-level of gene expression upon hydrodynamic boost.


Assuntos
Acridinas/metabolismo , DNA/administração & dosagem , Expressão Gênica , Fígado/metabolismo , Polietilenoglicóis/metabolismo , Acridinas/química , Animais , DNA/química , DNA/metabolismo , Técnicas de Transferência de Genes , Meia-Vida , Hidrodinâmica , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Polietilenoglicóis/química , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...