Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 10(20): e2100741, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34494401

RESUMO

Tendons are among the most mechanically stressed tissues of the body, with a functional core of type-I collagen fibers maintained by embedded stromal fibroblasts known as tenocytes. The intrinsic load-bearing core compartment of tendon is surrounded, nourished, and repaired by the extrinsic peritendon, a synovial-like tissue compartment with access to tendon stem/progenitor cells as well as blood monocytes. In vitro tendon model systems generally lack this important feature of tissue compartmentalization, while in vivo models are cumbersome when isolating multicellular mechanisms. To bridge this gap, an improved in vitro model of explanted tendon core stromal tissue (mouse tail tendon fascicles) surrounded by cell-laden collagen hydrogels that mimic extrinsic tissue compartments is suggested. Using this model, CD146+ tendon stem/progenitor cell and CD45+ F4/80+ bone-marrow derived macrophage activity within a tendon injury-like niche are recapitulated. It is found that extrinsic stromal progenitors recruit to the damaged core, contribute to an overall increase in catabolic ECM gene expression, and accelerate the decrease in mechanical properties. Conversely, it is found that extrinsic bone-marrow derived macrophages in these conditions adopt a proresolution phenotype that mitigates rapid tissue breakdown by outwardly migrated tenocytes and F4/80+ "tenophages" from the intrinsic tissue core.


Assuntos
Traumatismos dos Tendões , Tendões , Animais , Colágeno , Macrófagos , Camundongos , Tenócitos
2.
Pharmaceutics ; 11(9)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480533

RESUMO

Locally delivered anti-inflammatory compounds can restore the homeostasis of the degenerated intervertebral disc (IVD). With beneficial effects on IVD cells, epigallocatechin 3-gallate (EGCG) is a promising therapeutic candidate. However, EGCG is prone to rapid degradation and/or depletion. Therefore, the purpose of this study was to develop a method for controlled EGCG delivery in the degenerated IVD. Primary IVD cells were isolated from human donors undergoing IVD surgeries. EGCG was encapsulated into microparticles by electrospraying of glutaraldehyde-crosslinked gelatin. The resulting particles were characterized in terms of cytocompatibility and anti-inflammatory activity, and combined with a thermoresponsive carrier to produce an injectable EGCG delivery system. Subsequently, electrospraying was scaled up using the industrial NANOSPIDER™ technology. The produced EGCG microparticles reduced the expression of inflammatory (IL-6, IL-8, COX-2) and catabolic (MMP1, MMP3, MMP13) mediators in pro-inflammatory 3D cell cultures. Combining the EGCG microparticles with the carrier showed a trend towards modulating EGCG activity/release. Electrospray upscaling was achieved, leading to particles with homogenous spherical morphologies. In conclusion, electrospray-based encapsulation of EGCG resulted in cytocompatible microparticles that preserved the activity of EGCG and showed the potential to control EGCG release, thus favoring IVD health by downregulating local inflammation. Future studies will focus on further exploring the biological activity of the developed delivery system for potential clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...