Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 225: 109272, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209837

RESUMO

PURPOSE: The purpose of this study was to examine the role of the immune system and its influence on chronic retinal ganglion cell (RGC) dysfunction following blast-mediated traumatic brain injury (bTBI). METHODS: C57BL/6J and B6.129S7-Rag1tm1Mom/J (Rag-/-) mice were exposed to one blast injury of 140 kPa. A separate cohort of C57BL/6J mice was exposed to sham-blast. Four weeks following bTBI mice were euthanized, and splenocytes were collected. Adoptive transfer (AT) of splenocytes into naïve C57BL/6J recipient mice was accomplished via tail vein injection. Three groups of mice were analyzed: those receiving AT of splenocytes from C57BL/6J mice exposed to blast (AT-TBI), those receiving AT of splenocytes from C57BL/6J mice exposed to sham (AT-Sham), and those receiving AT of splenocytes from Rag-/- mice exposed to blast (AT-Rag-/-). The visual function of recipient mice was analyzed with the pattern electroretinogram (PERG), and the optomotor response (OMR). The structure of the retina was evaluated using optical coherence tomography (OCT), and histologically using BRN3A-antibody staining. RESULTS: Analysis of the PERG showed a decreased amplitude two months post-AT that persisted for the duration of the study in AT-TBI mice. We also observed a significant decrease in the retinal thickness of AT-TBI mice two months post-AT compared to sham, but not at four or six months post-AT. The OMR response was significantly decreased in AT-TBI mice 5- and 6-months post-AT. BRN3A staining showed a loss of RGCs in AT-TBI and AT-Rag-/- mice. CONCLUSION: These results suggest that the immune system contributes to chronic RGC dysfunction following bTBI.


Assuntos
Lesões Encefálicas Traumáticas , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/complicações , Imunidade
2.
Invest Ophthalmol Vis Sci ; 62(7): 13, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106210

RESUMO

Purpose: The purpose of this study was to examine the influence of genetic background on the retinal ganglion cell (RGC) response to blast-mediated traumatic brain injury (TBI) in Jackson Diversity Outbred (J:DO), C57BL/6J and BALB/cByJ mice. Methods: Mice were subject to one blast injury of 137 kPa. RGC structure was analyzed by optical coherence tomography (OCT), function by the pattern electroretinogram (PERG), and histologically using BRN3A antibody staining. Results: Comparison of the change in each group from baseline for OCT and PERG was performed. There was a significant difference in the J:DOΔOCT compared to C57BL/6J mice (P = 0.004), but not compared to BALB/cByJ (P = 0.21). There was a significant difference in the variance of the ΔOCT in J:DO compared to both C57BL/6J and BALB/cByJ mice. The baseline PERG amplitude was 20.33 ± 9.32 µV, which decreased an average of -4.14 ± 12.46 µV following TBI. Baseline RGC complex + RNFL thickness was 70.92 ± 4.52 µm, which decreased an average of -1.43 ± 2.88 µm following blast exposure. There was not a significant difference in the ΔPERG between J:DO and C57BL/6J (P = 0.13), although the variances of the groups were significantly different. Blast exposure in J:DO mice results in a density change of 558.6 ± 440.5 BRN3A-positive RGCs/mm2 (mean ± SD). Conclusions: The changes in retinal outcomes had greater variance in outbred mice than what has been reported, and largely replicated herein, for inbred mice. These results demonstrate that the RGC response to blast injury is highly dependent upon genetic background.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas , Retina , Células Ganglionares da Retina/fisiologia , Estresse Fisiológico/fisiologia , Fator de Transcrição Brn-3A/genética , Animais , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Eletrorretinografia/métodos , Variação Genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Retina/patologia , Retina/fisiologia , Tomografia de Coerência Óptica/métodos
3.
Sci Rep ; 11(1): 11774, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083587

RESUMO

Traumatic brain injuries (TBI) of varied types are common across all populations and can cause visual problems. For military personnel in combat settings, injuries from blast exposures (bTBI) are prevalent and arise from a myriad of different situations. To model these diverse conditions, we are one of several groups modeling bTBI using mice in varying ways. Here, we report a refined analysis of retinal ganglion cell (RGC) damage in male C57BL/6J mice exposed to a blast-wave in an enclosed chamber. Ganglion cell layer thickness, RGC density (BRN3A and RBPMS immunoreactivity), cellular density of ganglion cell layer (hematoxylin and eosin staining), and axon numbers (paraphenylenediamine staining) were quantified at timepoints ranging from 1 to 17-weeks. RNA sequencing was performed at 1-week and 5-weeks post-injury. Earliest indices of damage, evident by 1-week post-injury, are a loss of RGC marker expression, damage to RGC axons, and increase in glial markers expression. Blast exposure caused a loss of RGC somas and axons-with greatest loss occurring by 5-weeks post-injury. While indices of glial involvement are prominent early, they quickly subside as RGCs are lost. The finding that axonopathy precedes soma loss resembles pathology observed in mouse models of glaucoma, suggesting similar mechanisms.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/etiologia , Transtornos da Visão/etiologia , Animais , Axônios/metabolismo , Biomarcadores , Morte Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fatores de Tempo , Tomografia de Coerência Óptica , Transtornos da Visão/diagnóstico , Transtornos da Visão/metabolismo
4.
Invest Ophthalmol Vis Sci ; 61(12): 7, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33030508

RESUMO

Purpose: In a mouse model of blast-mediated traumatic brain injury (bTBI), interleukin-1 (IL-1)-pathway components were tested as potential therapeutic targets for bTBI-mediated retinal ganglion cell (RGC) dysfunction. Sex was also evaluated as a variable for RGC outcomes post-bTBI. Methods: Male and female mice with null mutations in genes encoding IL-1α, IL-1ß, or IL-1RI were compared to C57BL/6J wild-type (WT) mice after exposure to three 20-psi blast waves given at an interblast interval of 1 hour or to mice receiving sham injury. To determine if genetic blockade of IL-1α, IL-1ß, or IL-1RI could prevent damage to RGCs, the function and structure of these cells were evaluated by pattern electroretinogram and optical coherence tomography, respectively, 5 weeks following blast or sham exposure. RGC survival was also quantitatively assessed via immunohistochemical staining of BRN3A at the completion of the study. Results: Our results showed that male and female WT mice had a similar response to blast-induced retinal injury. Generally, constitutive deletion of IL-1α, IL-1ß, or IL-1RI did not provide full protection from the effects of bTBI on visual outcomes; however, injured WT mice had significantly worse visual outcomes compared to the injured genetic knockout mice. Conclusions: Sex does not affect RGC outcomes after bTBI. The genetic studies suggest that deletion of these IL-1 pathway components confers some protection, but global deletion from birth did not result in a complete rescue.


Assuntos
Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Interleucina-1/genética , Células Ganglionares da Retina/fisiologia , Acuidade Visual/fisiologia , Animais , Traumatismos por Explosões/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Sobrevivência Celular/fisiologia , Eletrorretinografia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fatores Sexuais , Tomografia de Coerência Óptica , Fator de Transcrição Brn-3A/metabolismo
5.
Invest Ophthalmol Vis Sci ; 60(13): 4159-4170, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598627

RESUMO

Purpose: The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function. Methods: Mice were subjected to sham blast injury, one single blast injury, or three blast injuries separated by either 1 hour or 1 week, using a blast intensity of 20 PSI. To examine the effect of blast preconditioning, mice were subjected to sham blast injury, one single 20-PSI injury, or three blast injuries separated by 1 week (5 PSI, 5 PSI, 20 PSI and 5 PSI, 5 PSI, 5 PSI). RGC structure was analyzed by optical coherence tomography (OCT) and function was analyzed by the pattern electroretinogram (PERG). BRN3A-positive cells were quantified to determine RGC density. RNA-seq analysis was used to identify transcriptional changes between groups. Results: Analysis of mice with multiple blast exposures of 20 PSI revealed no significant differences compared to one 20-pounds per square inch (PSI) exposure using OCT, PERG, or BRN3A cell counts. Analysis of mice exposed to two preconditioning 5-PSI blasts prior to one 20-PSI blast showed preservation of RGC structure and function. RNA-seq analysis of the retina identified multiple transcriptomic changes between conditions. Pharmacologic inhibition of KMO preserved RGC responses compared to vehicle-treated mice. Conclusions: Preconditioning protects RGC from blast injury. Protective effects appear to involve changes in KMO activity, whose inhibition is also protective.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Quinurenina 3-Mono-Oxigenase/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/efeitos dos fármacos , Tomografia de Coerência Óptica
6.
Sci Rep ; 9(1): 6752, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043676

RESUMO

Chédiak-Higashi syndrome (CHS) is a lethal disorder caused by mutations in the LYST gene that involves progressive neurologic dysfunction. Lyst-mutant mice exhibit neurologic phenotypes that are sensitive to genetic background. On the DBA/2J-, but not on the C57BL/6J-background, Lyst-mutant mice exhibit overt tremor phenotypes associated with loss of cerebellar Purkinje cells. Here, we tested whether assays for ataxia could measure this observed strain-dependency, and if so, establish parameters for empowering phenotype- and candidate-driven approaches to identify genetic modifier(s). A composite phenotypic scoring system distinguished phenotypes in Lyst-mutants and uncovered a previously unrecognized background difference between wild-type C57BL/6J and DBA/2J mice. Accelerating rotarod performance also distinguished phenotypes in Lyst-mutants, but at more advanced ages. These results establish that genetic background, Lyst genotype, and age significantly influence the severity of CHS-associated neurologic deficits. Purkinje cell quantifications likewise distinguished phenotypes of Lyst-mutant mice, as well as background differences between wild-type C57BL/6J and DBA/2J mice. To aid identification of potential genetic modifier genes causing these effects, we searched public datasets for cerebellar-expressed genes that are differentially expressed and/or contain potentially detrimental genetic variants. From these approaches, Nos1, Prdx2, Cbln3, Gnb1, Pttg1 were confirmed to be differentially expressed and leading candidates.


Assuntos
Ataxia Cerebelar/patologia , Síndrome de Chediak-Higashi/complicações , Mutação , Doenças do Sistema Nervoso/patologia , Animais , Ataxia Cerebelar/etiologia , Modelos Animais de Doenças , Feminino , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Doenças do Sistema Nervoso/etiologia , Fenótipo
7.
NPJ Aging Mech Dis ; 5: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701080

RESUMO

Occupational exposure to organophosphate pesticides, such as chlorpyrifos (CPF), increases the risk of Alzheimer's disease (AD), though the mechanism is unclear. To investigate this, we subjected 4-month-old male and female wild-type (WT) and TgF344-AD rats, a transgenic AD model, to an occupational CPF exposure paradigm that recapitulates biomarkers and behavioral impairments experienced by agricultural workers. Subsequent cognition and neuropathology were analyzed over the next 20 months. CPF exposure caused chronic microglial dysregulation and accelerated neurodegeneration in both males and females. The effect on neurodegeneration was more severe in males, and was also associated with accelerated cognitive impairment. Females did not exhibit accelerated cognitive impairment after CPF exposure, and amyloid deposition and tauopathy were unchanged in both males and females. Microglial dysregulation may mediate the increased risk of AD associated with occupational organophosphate exposure, and future therapies to preserve or restore normal microglia might help prevent AD in genetically vulnerable individuals exposed to CPF or other disease-accelerating environmental agents.

8.
Sci Rep ; 8(1): 13088, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166564

RESUMO

Latanoprost is a common glaucoma medication. Here, we study longitudinal effects of sustained latanoprost treatment on intraocular pressure (IOP) in C57BL/6J mice, as well as two potential side-effects, changes in iris pigmentation and central corneal thickness (CCT). Male C57BL/6J mice were treated daily for 16 weeks with latanoprost. Control mice were treated on the same schedule with the preservative used with latanoprost, benzalkonium chloride (BAK), or handled, without ocular treatments. IOP and CCT were studied at pre-treatment, 2 "early" time points, and 2 "late" time points; slit-lamp analysis performed at a late time point; and expression of corneal and iridial candidate genes analyzed at the end of the experiment. Latanoprost lowered IOP short, but not long-term. Sustained application of BAK consistently resulted in significant corneal thinning, whereas sustained treatment with latanoprost resulted in smaller and less consistent changes. Neither treatment affected iris pigmentation, corneal matrix metalloprotease expression or iridial pigment-related genes expression. In summary, latanoprost initially lowered IOP in C57BL/6J mice, but became less effective with sustained treatment, likely due to physiological adaptation. These results identify a new resource for studying changes in responsiveness associated with long-term treatment with latanoprost and highlight detrimental effects of commonly used preservative BAK.


Assuntos
Câmara Anterior/anatomia & histologia , Câmara Anterior/fisiologia , Latanoprosta/administração & dosagem , Latanoprosta/farmacologia , Animais , Câmara Anterior/efeitos dos fármacos , Compostos de Benzalcônio/farmacologia , Córnea/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Pressão Intraocular/efeitos dos fármacos , Iris/efeitos dos fármacos , Iris/fisiologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Pigmentação/efeitos dos fármacos , Pigmentação/genética , Fatores de Tempo
9.
Biol Psychiatry ; 84(7): 488-498, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246437

RESUMO

BACKGROUND: In addition to cognitive deficits, Alzheimer's disease (AD) is associated with other neuropsychiatric symptoms, including severe depression. Indeed, depression often precedes cognitive deficits in patients with AD. Unfortunately, the field has seen only minimal therapeutic advances, underscoring the critical need for new treatments. P7C3 aminopropyl carbazoles promote neuronal survival by enhancing nicotinamide adenine dinucleotide flux in injured neurons. Neuroprotection with P7C3 compounds has been demonstrated in preclinical models of neurodegeneration by virtue of promoting neuronal survival independently of early disease-specific pathology, resulting in protection from cognitive deficits and depressive-like behavior. We hypothesize that P7C3 compounds might be uniquely applicable to patients with AD, given the comorbid presentation of depression and cognitive deficits. METHODS: Aging male and female wild-type and TgF344-AD rats, a well-characterized preclinical AD model, were administered (-)-P7C3-S243 daily for 9 and 18 months, beginning at 6 months of age. Behavioral phenotypes related to cognition and depression were assessed at 15 and 24 months, and brain pathology and biochemistry were assessed at 24 months. RESULTS: (-)-P7C3-S243 safely protected aging male and female wild-type and TgF344-AD rats from cognitive deficits and depressive-like behavior. Depressive-like behavior occurred earlier than cognitive deficits in TgF344-AD rats, consistent with AD in many patients. Treatment with (-)-P7C3-S243 blocked neurodegeneration in TgF344-AD rats, without altering amyloid deposition or indicators of neuroinflammation. CONCLUSIONS: Neuronal cell death-specific treatment approaches, such as P7C3 compounds, may represent a new treatment approach for patients experiencing the combination of cognitive deficits and depression associated with AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Carbazóis/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Depressão/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Carbazóis/administração & dosagem , Disfunção Cognitiva/etiologia , Depressão/etiologia , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Masculino , Degeneração Neural/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos
10.
Exp Eye Res ; 146: 386-392, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26283021

RESUMO

The present article introduces RetFM-J, a semi-automated ImageJ-based module that detects, counts, and collects quantitative data on nuclei of the inner retina from H&E-stained whole-mounted retinas. To illustrate performance, computer-derived outputs were analyzed in inbred C57BL/6J mice. Automated characterization yielded computer-derived outputs that closely matched manual counts. As a method using open-source software that is freely available, inexpensive staining reagents that are robust, and imaging equipment that is routine to most laboratories, RetFM-J could be utilized in a wide variety of experiments benefiting from high-throughput, quantitative, uniform analyses of total cellularity in the inner retina.


Assuntos
Contagem de Células/métodos , Núcleo Celular , Diagnóstico por Computador , Técnicas de Diagnóstico Oftalmológico , Retina/diagnóstico por imagem , Células Ganglionares da Retina/citologia , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Modelos Animais
11.
Exp Eye Res ; 146: 370-385, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26474494

RESUMO

The inner surface of the retina contains a complex mixture of neurons, glia, and vasculature, including retinal ganglion cells (RGCs), the final output neurons of the retina and primary neurons that are damaged in several blinding diseases. The goal of the current work was two-fold: to assess the feasibility of using computer-assisted detection of nuclei and random forest classification to automate the quantification of RGCs in hematoxylin/eosin (H&E)-stained retinal whole-mounts; and if possible, to use the approach to examine how nuclear size influences disease susceptibility among RGC populations. To achieve this, data from RetFM-J, a semi-automated ImageJ-based module that detects, counts, and collects quantitative data on nuclei of H&E-stained whole-mounted retinas, were used in conjunction with a manually curated set of images to train a random forest classifier. To test performance, computer-derived outputs were compared to previously published features of several well-characterized mouse models of ophthalmic disease and their controls: normal C57BL/6J mice; Jun-sufficient and Jun-deficient mice subjected to controlled optic nerve crush (CONC); and DBA/2J mice with naturally occurring glaucoma. The result of these efforts was development of RetFM-Class, a command-line-based tool that uses data output from RetFM-J to perform random forest classification of cell type. Comparative testing revealed that manual and automated classifications by RetFM-Class correlated well, with 83.2% classification accuracy for RGCs. Automated characterization of C57BL/6J retinas predicted 54,642 RGCs per normal retina, and identified a 48.3% Jun-dependent loss of cells at 35 days post CONC and a 71.2% loss of RGCs among 16-month-old DBA/2J mice with glaucoma. Output from automated analyses was used to compare nuclear area among large numbers of RGCs from DBA/2J mice (n = 127,361). In aged DBA/2J mice with glaucoma, RetFM-Class detected a decrease in median and mean nucleus size of cells classified into the RGC category, as did an independent confirmation study using manual measurements of nuclear area demarcated by BRN3A-immunoreactivity. In conclusion, we have demonstrated that histology-based random forest classification is feasible and can be utilized to study RGCs in a high-throughput fashion. Despite having some limitations, this approach demonstrated a significant association between the size of the RGC nucleus and the DBA/2J form of glaucoma.


Assuntos
Contagem de Células/métodos , Técnicas de Diagnóstico Oftalmológico , Glaucoma/classificação , Células Ganglionares da Retina/citologia , Células Amácrinas , Animais , Núcleo Celular/patologia , Diagnóstico por Computador/métodos , Modelos Animais de Doenças , Estudos de Viabilidade , Glaucoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
12.
Invest Ophthalmol Vis Sci ; 55(12): 8330-41, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25468886

RESUMO

PURPOSE: Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. METHODS: Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. RESULTS: We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. CONCLUSIONS: Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at an earlier stage when treatments may be more effective in preventing these sequelae. In addition, treatment with the neuroprotective agent P7C3-S243 after TBI protects from visual system dysfunction after TBI.


Assuntos
Traumatismos por Explosões/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Carbazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Transtornos da Visão/prevenção & controle , Análise de Variância , Animais , Traumatismos por Explosões/complicações , Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas/complicações , Lesões Encefálicas/fisiopatologia , Contagem de Células , Dendritos/patologia , Modelos Animais de Doenças , Eletrorretinografia/efeitos dos fármacos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Transtornos da Visão/etiologia , Transtornos da Visão/fisiopatologia
13.
Cell Rep ; 8(6): 1731-1740, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25220467

RESUMO

The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI). This protective quality may be linked to the ability of P7C3 molecules to activate nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in nicotinamide adenine dinucleotide salvage. Initiation of daily treatment with our recently reported lead agent, P7C3-S243, 1 day after blast-mediated TBI blocks axonal degeneration and preserves normal synaptic activity, learning and memory, and motor coordination in mice. We additionally report persistent neurologic deficits and acquisition of an anxiety-like phenotype in untreated animals 8 months after blast exposure. Optimized variants of P7C3 thus offer hope for identifying neuroprotective agents for conditions involving axonal damage, neuronal cell death, or both, such as occurs in TBI.


Assuntos
Transporte Axonal/efeitos dos fármacos , Axônios/metabolismo , Carbazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Carbazóis/química , Carbazóis/uso terapêutico , Modelos Animais de Doenças , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Nicotinamida Fosforribosiltransferase/metabolismo , Transmissão Sináptica/efeitos dos fármacos
14.
Nucleic Acids Res ; 39(12): 5164-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21349877

RESUMO

The synthesis of ribosomal subunits in the nucleolus is a conserved, essential process that results in cytoplasmic ribosomes with precisely processed and folded rRNAs assembled with ribosomal proteins. It has been proposed, but never directly demonstrated, that the U3 small nucleolar RNA (snoRNA), a nucleolar component required for ribosome biogenesis, is a chaperone for pre-18S rRNA folding. To test this, we used in vivo chemical probing with dimethyl sulfate to detect changes in pre-rRNA structure upon genetic manipulation of the yeast, Saccharomyces cerevisiae. Based on changes in nucleotide reactivity, we found that the U3 snoRNA is indeed required for folding of the pre-18S rRNA. Furthermore, we detected a new essential base pairing interaction that is likely the initial anchor that recruits the U3 snoRNA to the pre-rRNA, is a prerequisite for the subsequent interactions, and is required for the small subunit processome formation. Substitution of the 5'-ETS nucleotides of the pre-rRNA involved in this initial base pairing interaction is lethal, but growth is restored when a complementary U3 snoRNA is expressed. The U3 snoRNP, via base pairing, and its associated proteins, are part of the required machinery that orchestrates the folding of pre-rRNA that results in the assembly of the small ribosomal subunit.


Assuntos
Precursores de RNA/química , RNA Ribossômico 18S/química , RNA Nucleolar Pequeno/química , Pareamento de Bases , Sequência de Bases , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , RNA Nucleolar Pequeno/metabolismo
15.
Mol Biosyst ; 6(3): 481-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20174677

RESUMO

Ribosomes are vital for cell growth and survival. Until recently, it was believed that mutations in ribosomes or ribosome biogenesis factors would be lethal, due to the essential nature of these complexes. However, in the last few decades, a number of diseases of ribosome biogenesis have been discovered. It remains a challenge in the field to elucidate the molecular mechanisms underlying them.


Assuntos
Doenças Genéticas Inatas/genética , Mutação , Neoplasias/genética , Ribossomos/genética , Ribossomos/fisiologia , Doença/genética , Humanos , Precursores de RNA/genética , Proteínas Ribossômicas/genética
16.
J Mol Biol ; 376(1): 92-108, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18155048

RESUMO

The ribosomal protein (r-protein) S20 is a primary binding protein. As such, it interacts directly and independently with the 5' domain as well as the 3' minor domain of 16S ribosomal RNA (rRNA) in minimal particles and the fully assembled 30S subunit. The interactions observed between r-protein S20 and the 5' domain of 16S rRNA are quite extensive, while those between r-protein S20 and the 3' minor domain are significantly more limited. In this study, directed hydroxyl radical probing mediated by Fe(II)-derivatized S20 proteins was used to monitor the folding of 16S rRNA during r-protein association and 30S subunit assembly. An analysis of the cleavage patterns in the minimal complexes [16S rRNA and Fe(II)-S20] and the fully assembled 30S subunit containing the same Fe(II)-derivatized proteins shows intriguing similarities and differences. These results suggest that the two domains, 5' and 3' minor, are organized relative to S20 at different stages of assembly. The 5' domain acquires, in a less complex ribonucleoprotein particle than the 3' minor domain, the same architecture as observed in mature subunits. These results are similar to what would be predicted of subunit assembly by the 5'-to-3' direction assembly model.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Compostos Ferrosos/análise , Radical Hidroxila/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Ligação Proteica , RNA Ribossômico 16S/química , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química
17.
J Mol Biol ; 368(3): 853-69, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17376481

RESUMO

Ribonucleoprotein particles (RNPs) are important components of all living systems, and the assembly of these particles is an intricate, often multistep, process. The 30 S ribosomal subunit is composed of one large RNA (16 S rRNA) and 21 ribosomal proteins (r-proteins). In vitro studies have revealed that assembly of the 30 S subunit is a temperature-dependent process involving sequential binding of r-proteins and conformational changes of 16 S rRNA. Additionally, a temperature-dependent conformational rearrangement was reported for a complex of primary r-protein S4 and 16 S rRNA. Given these observations, a systematic study of the temperature-dependence of 16 S rRNA architecture in individual complexes with the other five primary binding proteins (S7, S8, S15, S17, and S20) was performed. While all primary binding r-proteins bind 16 S rRNA at low temperature, not all r-proteins/16 S rRNA complexes undergo temperature-dependent conformational rearrangements. Some RNPs achieve the same conformation regardless of temperature, others show minor adjustments in 16 S rRNA conformation upon heating and, finally, others undergo significant temperature-dependent changes. Some of the architectures achieved in these rearrangements are consistent with subsequent downstream assembly events such as assembly of the secondary and tertiary binding r-proteins. The differential interaction of 16 S rRNA with r-proteins illustrates a means for controlling the sequential assembly pathway for complex RNPs and may offer insights into aspects of RNP assembly in general.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química , Proteínas Ribossômicas/química , Conformação Proteica , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/metabolismo , Termodinâmica
18.
Mol Cell ; 20(4): 497-9, 2005 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-16307913

RESUMO

Recent findings by Karbstein et al. (2005 [this issue of Molecular Cell]) reveal that association of the preribosomal biosynthesis factors U3 snoRNA and Rcl1p is controlled by the GTPase Bms1p, suggesting that regulatory events are involved in the formation of ribosome biogenesis complexes.


Assuntos
Células Eucarióticas/enzimologia , GTP Fosfo-Hidrolases/fisiologia , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Células Eucarióticas/metabolismo
19.
Chemistry ; 9(20): 5097-106, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14562327

RESUMO

Complex cis-[Pt(en)(H(2)O)(2)](2+) promotes selective hydrolytic cleavage of two proteins, horse cytochrome c and bovine beta-casein. The cleavage is completed in 24 h under relatively mild conditions, at about pH 2.5, and a temperature as low as 40 degrees C. The results of HPLC and TSDS PAGE separations, MALDI mass spectrometry, and Edman sequencing showed that cleavage occurred exclusively at the peptide bond involving the C-terminus of each methionine residue, both such residues in cytochrome c and all six such residues in beta-casein. While having the same selectivity as cyanogen bromide (CNBr), the most common chemical protease, cis-[Pt(en)(H(2)O)(2)](2+) has several advantages. It is nonvolatile, easy to handle, and recyclable. Its cleavage is residue-selective, the rest of the polypeptide backbone remains intact, and the other side chains remain unmodified. It is applied in approximately equimolar amounts with respect to methionine residues, creates free amino and carboxylic groups, and cleaves even the Met-Pro bond, which is resistant to CNBr and most proteolytic enzymes. Finally the complex also works in the presence of the denaturing reagent sodium dodecyl sulfate. Experiments with the synthetic peptides, AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala (termed Met-peptide) and AcVal-Lys-Gly-Gly-His-Ala-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala (termed HisMet-peptide) as substrates, revealed structural and mechanistic features of the proteolytic reactions. We explain why two similar complexes with similar metal ions, cis-[Pt(en)(H(2)O)(2)](2+) and cis-[Pd(en)(H(2)O)(2)](2+), differ in selectivity as proteolytic reagents. The selectivity of cleavage is governed by the selectivity of the cis-[Pt(en)(H(2)O)(2)](2+) binding to the methionine side chain. The proteolytic activity is governed by the modes of coordination, which control the approach of the anchored Pt(II) ion to the scissile peptide bond. The cleavage occurs with a small, but significant, catalytic turnover of more than 18 after 7 days. The ability of cis-[Pt(en)(H(2)O)(2)](2+) to cleave proteins at relatively few sites, with explicable selectivity and catalytic turnover, bodes well for its use in biochemical practice.


Assuntos
Endopeptidases/metabolismo , Metionina/metabolismo , Compostos de Platina/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Caseínas/metabolismo , Bovinos , Brometo de Cianogênio/química , Brometo de Cianogênio/metabolismo , Citocromos c/metabolismo , Endopeptidases/química , Cavalos , Indicadores e Reagentes , Cinética , Metionina/química , Modelos Químicos , Dados de Sequência Molecular , Estrutura Molecular , Peso Molecular , Paládio/química , Paládio/metabolismo , Especificidade por Substrato
20.
Inorg Chem ; 42(13): 4036-45, 2003 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-12817959

RESUMO

This study shows, for the first time, the advantages of combining two transition-metal complexes as selective proteolytic reagents. In this procedure, cis-[Pt(en)(H(2)O)(2)](2+) is followed by [Pd(H(2)O)(4)](2+). In the peptide AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala, the Pt(II) reagent cleaves the Met6-Ala7 peptide bond, whereas the Pd(II) reagent cleaves the Gly4-Gly5 bond. In the peptide AcVal-Lys-Gly-Gly-His-Ala-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala, the Pt(II) reagent cleaves the Met11-Ala12 peptide bond, whereas the Pd(II) reagent cleaves the Gly3-Gly4 bond. All cleavage reactions are regioselective and complete at pH 2.0 and 60 degrees C. Each metal ion binds to an anchoring side chain and then, as a Lewis acid, activates a proximal peptide bond toward hydrolysis by the solvent water. The selectivity in cleavage is a consequence of the selectivity in this initial anchoring. Both Pt(II) and Pd(II) reagents bind to the methionine side chain, whereas only the Pd(II) reagent binds to the histidine side chain under the reaction conditions. Consequently, only methionine residues direct the cleavage by the Pt(II) reagent, whereas both methionine and histidine residues direct the cleavage by the Pd(II) reagent. The Pt(II) reagent cleaves the first bond downstream from the anchor, i.e., the Met-Z bond. The Pd(II) reagent cleaves the second bond upstream from the anchor, i.e., the X-Y bond in the X-Y-Met-Z and in the X-Y-His-Z segments. The diethylenetriamine complex [Pt(dien)(H(2)O)](2+) cannot promote cleavage. Its prior binding to the Met11 residue in the second peptide prevents the Pd(II) reagents from binding to Met11 and cleaving the Gly9-Gly10 bond and directs the cleavage by the Pd(II) reagent exclusively at the Gly3-Gly4 bond. Our new method was tested on equine myoglobin, which contains 2 methionine residues and 11 histidine residues. The complete methionine-directed cleavage of the Met55-Lys56 and Met131-Thr132 bonds by the Pt(II) reagent produced three fragments, suitable for various biochemical applications because they are relatively long and contain amino and carboxylic terminal groups. The deliberately incomplete histidine-directed cleavage of the long fragments 1.55 and 56.131 at many sites by the Pd(II) reagent produced numerous short fragments, suitable for protein identification by mass spectrometry. The ability of combined Pt(II) and Pd(II) complexes to cleave proteins with explicable and adjustable selectivity and with good yields bodes well for their greater use in biochemical and bioanalytical practice.


Assuntos
Compostos Organometálicos/química , Compostos Organoplatínicos/química , Paládio/química , Peptídeos/química , Proteínas/química , Sequência de Aminoácidos , Animais , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cavalos , Hidrólise , Indicadores e Reagentes , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Mioglobina/química , Fragmentos de Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...