Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 118: 103754, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000146

RESUMO

Sunning, or sunbathing, is a behavior observed in diverse birds from at least 50 taxonomic families. While sunning, birds exhibit signs of heat stress, notably panting, indicating a risk of overheating. Given that even modest increases in brain temperature can impair brain function, sunning birds may have mechanisms that selectively cool the brain. Sunning birds could cool the brain using active physiological mechanisms (e.g., an ophthalmic rete or sleeping) or passive adaptations, such as light-colored plumage over the cranium. White-capped noddies are tropical seabirds that sunbathe in direct sunlight on cloudless days. Using infrared thermography on wild birds, we found that the white cap is 20 °C cooler than that of the black back while sunning. A deceased bird showed the same thermal profile, indicating that this difference arises from dichromatic coloration and not underlying physiology. Thus, the white cap may extend the duration of time noddies can sunbathe and keep the brain cool, near core body temperature, while allowing the rest of the body to heat up, perhaps to displace or kill parasites.


Assuntos
Charadriiformes , Temperatura Baixa , Humanos , Animais , Temperatura Corporal , Temperatura , Regulação da Temperatura Corporal/fisiologia , Aves/fisiologia
2.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203604

RESUMO

The recessive Ryanodine Receptor Type 1 (RyR1) P3527S mutation causes mild muscle weakness in patients and increased resting cytoplasmic [Ca2+] in transformed lymphoblastoid cells. In the present study, we explored the cellular/molecular effects of this mutation in a mouse model of the mutation (RyR1 P3528S). The results were obtained from 73 wild type (WT/WT), 82 heterozygous (WT/MUT) and 66 homozygous (MUT/MUT) mice with different numbers of observations in individual data sets depending on the experimental protocol. The results showed that WT/MUT and MUT/MUT mouse strength was less than that of WT/WT mice, but there was no difference between genotypes in appearance, weight, mobility or longevity. The force frequency response of extensor digitorum longus (EDL) and soleus (SOL) muscles from WT/MUT and MUT/MUT mice was shifter to higher frequencies. The specific force of EDL muscles was reduced and Ca2+ activation of skinned fibres shifted to a lower [Ca2+], with an increase in type I fibres in EDL muscles and in mixed type I/II fibres in SOL muscles. The relative activity of RyR1 channels exposed to 1 µM cytoplasmic Ca2+ was greater in WT/MUT and MUT/MUT mice than in WT/WT mice. We suggest the altered RyR1 activity due to the P2328S substitution could increase resting [Ca2+] in muscle fibres, leading to changes in fibre type and contractile properties.


Assuntos
Ativação do Canal Iônico , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Camundongos , Citoplasma , Contração Muscular , Fibras Musculares Esqueléticas , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
3.
J Appl Physiol (1985) ; 128(5): 1207-1216, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213115

RESUMO

In vitro studies have shown that alterations in redox state can cause a range of opposing effects on the properties of the contractile apparatus in skeletal muscle fibers. To test whether and how redox changes occurring in vivo affect the contractile properties, vastus lateralis muscle fibers from seven healthy young adults were examined at rest (PRE) and following (POST) high-intensity intermittent cycling exercise. Individual mechanically skinned muscle fibers were exposed to heavily buffered solutions at progressively higher free [Ca2+] to determine their force-Ca2+ relationship. Following acute exercise, Ca2+ sensitivity was significantly decreased in type I fibers (by 0.06 pCa unit) but not in type II fibers (0.01 pCa unit). Specific force decreased after the exercise in type II fibers (-18%) but was unchanged in type I fibers. Treatment with the reducing agent dithiothreitol (DTT) caused a small decrease in Ca2+-sensitivity in type II fibers at PRE (by ∼0.014 pCa units) and a significantly larger decrease at POST (∼0.035 pCa units), indicating that the exercise had increased S-glutathionylation of fast troponin I. DTT treatment also increased specific force (by ∼4%), but only at POST. In contrast, DTT treatment had no effect on either parameter in type I fibers at either PRE or POST. In type I fibers, the decreased Ca2+ sensitivity was not due to reversible oxidative changes and may have contributed to a decrease in power production during vigorous exercises. In type II fibers, exercise-induced redox changes help counter the decline in Ca2+-sensitivity while causing a small decline in maximum force.NEW & NOTEWORTHY This study identified important cellular changes occurring in human skeletal muscle fibers following high-intensity intermittent exercise: 1) a decrease in contractile apparatus Ca2+ sensitivity in type I but not type II fibers, 2) a decrease in specific force only in type II muscle fibers, and 3) a redox-dependent increase in Ca2+ sensitivity occurring only in type II fibers, which would help maintain muscle performance by countering the normal metabolite-induced decline in Ca2+ sensitivity.


Assuntos
Treinamento Intervalado de Alta Intensidade , Cálcio , Humanos , Contração Muscular , Fibras Musculares de Contração Rápida , Fibras Musculares Esqueléticas , Músculo Esquelético , Adulto Jovem
4.
J Muscle Res Cell Motil ; 40(3-4): 343-351, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31175519

RESUMO

This study investigated the effects of fibre swelling on force production in rat and human skinned muscle fibres, using osmotic compression to reverse the fibre swelling. In mechanically-skinned fibres, the sarcolemma is removed but normal excitation-contraction coupling remains functional. Force responses in mechanically-skinned fibres were examined with and without osmotic compression by polyvinylpyrrolidone 40 kDa (PVP-40) or Dextran 500 kDa (dextran). Fibre diameter increased to 116 ± 2% (mean ± SEM) when rat skinned type II fibres were immersed in the standard intracellular solution, but remained close to the in situ size when 3% (mass/volume) PVP-40 or 4% Dextran were present. Myofibrillar Ca2+ sensitivity, as indicated by pCa50 (- log10[Ca2+] at half-maximal force), was increased in 4% Dextran (0.072 ± 0.007 pCa50 shift), but was not significantly changed in 3% PVP-40. Maximum Ca2+-activated force increased slightly to 103 ± 1% and 104 ± 1% in PVP-40 and Dextran, respectively. Both tetanic and depolarization-induced force responses in rat skinned type II fibres, elicited by electrical stimulation and ion substitution respectively, were increased by ~ 10 to 15% when the fibres were returned to their normal in situ diameter by addition of PVP-40 or Dextran. Interestingly, the potentiation of these force responses in PVP-40 was appreciably greater than could be explained by potentiation of myofibrillar function alone. These results indicate that muscle fibre swelling, as can occur with intense exercise, decreases evoked force responses by reducing both the Ca2+-sensitivity of the contractile apparatus properties and Ca2+ release from the sarcoplasmic reticulum.


Assuntos
Depressão/etiologia , Fadiga Muscular/fisiologia , Fibras Musculares Esqueléticas/patologia , Adulto , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Adulto Jovem
5.
Clin Exp Pharmacol Physiol ; 45(2): 146-154, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29044613

RESUMO

The contractile properties of vastus lateralis muscle fibres were examined in prostate cancer (PrCa) patients undergoing androgen deprivation therapy (ADT) and in age- and activity-matched healthy male subjects (Control). Mechanically-skinned muscle fibres were exposed to a sequence of heavily Ca2+ -buffered solutions at progressively higher free [Ca2+ ] to determine their force-Ca2+ relationship. Ca2+ -sensitivity was decreased in both type I and type II muscle fibres of ADT subjects relative to Controls (by -0.05 and -0.04 pCa units, respectively, P < .02), and specific force was around 13% lower in type I fibres of ADT subjects than in Controls (P = .02), whereas there was no significant difference in type II fibres. Treatment with the reducing agent dithiothreitol slightly increased specific force in type I and type II fibres of ADT subjects (by ~2%-3%, P < .05) but not in Controls. Pure type IIx fibres were found frequently in muscle from ADT subjects but not in Controls, and the overall percentage of myosin heavy chain IIx in muscle samples was 2.5 times higher in ADT subjects (P < .01). The findings suggest that testosterone suppression can negatively impact the contractile properties by (i) reducing Ca2+ -sensitivity in both type I and type II fibres and (ii) reducing maximum specific force in type I fibres.


Assuntos
Gosserrelina/uso terapêutico , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Neoplasias da Próstata/tratamento farmacológico , Idoso , Antagonistas de Androgênios , Antineoplásicos Hormonais/uso terapêutico , Humanos , Masculino
6.
PLoS One ; 7(5): e35226, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629297

RESUMO

We hypothesised that normal skeletal muscle stimulated intensely either in vitro or in situ would exhibit reactive oxygen species (ROS)-mediated contractile apparatus changes common to many pathophysiological conditions. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of the rat were bubbled with 95% O(2) and stimulated in vitro at 31°C to give isometric tetani (50 Hz for 0.5 s every 2 s) until maximum force declined to ≤30%. Skinned superficial slow-twitch fibers from the SOL muscles displayed a large reduction (∼41%) in maximum Ca(2+)-activated specific force (F(max)), with Ca(2+)-sensitivity unchanged. Fibers from EDL muscles were less affected. The decrease in F(max) in SOL fibers was evidently due to oxidation effects on cysteine residues because it was reversed if the reducing agent DTT was applied prior to activating the fiber. The GSH:GSSG ratio was ∼3-fold lower in the cytoplasm of superficial fibers from stimulated muscle compared to control, confirming increased oxidant levels. The presence of Tempol and L-NAME during in vitro stimulation prevented reduction in F(max). Skinned fibers from SOL muscles stimulated in vivo at 37°C with intact blood supply also displayed reduction in F(max), though to a much smaller extent (∼12%). Thus, fibers from muscles stimulated even with putatively adequate O(2) supply display a reversible oxidation-induced decrease in F(max) without change in Ca(2+)-sensitivity, consistent with action of peroxynitrite (or possibly superoxide) on cysteine residues of the contractile apparatus. Significantly, the changes closely resemble the contractile deficits observed in a range of pathophysiological conditions. These findings highlight how readily muscle experiences ROS-related deficits, and also point to potential difficulties when defining muscle performance and fatigue.


Assuntos
Cálcio/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Long-Evans , Ratos Wistar
7.
Am J Physiol Cell Physiol ; 290(4): C1199-208, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16306125

RESUMO

The repeated elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) above resting levels during contractile activity has been associated with long-lasting muscle fatigue. The mechanism underlying this fatigue appears to involve elevated [Ca(2+)](i) levels that induce disruption of the excitation-contraction (E-C) coupling process at the triad junction. Unclear, however, are which aspects of the activity-related [Ca(2+)](i) changes are responsible for the deleterious effects, in particular whether they depend primarily on the peak [Ca(2+)](i) reached locally at particular sites or on the temporal summation of the increased [Ca(2+)] in the cytoplasm as a whole. In this study, we used mechanically skinned fibers from rat extensor digitorum longus muscle, in which the normal E-C coupling process remains intact. The [Ca(2+)](i) was raised either by applying a set elevated [Ca(2+)] throughout the fiber or by using action potential stimulation to induce the release of sarcoplasmic reticulum Ca(2+) by the normal E-C coupling system with or without augmentation by caffeine or buffering with BAPTA. Herein we show that elevating [Ca(2+)](i) in the physiological range of 2-20 microM irreversibly disrupts E-C coupling in a concentration-dependent manner but requires exposure for a relatively long time (1-3 min) to cause substantial uncoupling. The effectiveness of Ca(2+) released via the endogenous system in disrupting E-C coupling indicates that the relatively high [Ca(2+)](i) attained close to the release site at the triad junction is a more important factor than the increase in bulk [Ca(2+)](i). Our results suggest that during prolonged vigorous activity, the many repeated episodes of relatively high triadic [Ca(2+)] can disrupt E-C coupling and lead to long-lasting fatigue.


Assuntos
Cálcio/metabolismo , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/metabolismo , Animais , Quelantes/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Técnicas In Vitro , Masculino , Músculo Esquelético/ultraestrutura , Ratos , Ratos Long-Evans , Retículo Sarcoplasmático/metabolismo , Estresse Mecânico
8.
J Muscle Res Cell Motil ; 25(3): 203-13, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15467383

RESUMO

This study investigated whether carnosine alters individual processes involved in normal excitation-contraction (E-C) coupling in mammalian skeletal muscle fibres. Mechanically-skinned fibre preparations were utilized because they allow carnosine to be precisely and readily applied to the cytoplasmic environment as desired, whilst still retaining the normal E-C coupling mechanism. Carnosine caused an increase (approximately +0.02 to approximately +0.09 pCa units) in Ca2+ -sensitivity of the contractile apparatus in a concentration-dependent manner (i.e. with 4, 8 and 16 mM respectively). Force responses elicited by 8 mM caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) were potentiated in the presence of carnosine (compared to the bracketing responses in the absence of carnosine). Force responses elicited by transverse tubular (T-) system depolarization via the dihydropyridine receptors (DHPRs), either by ionic (Na+) substitution or by action potentials (APs), were also potentiated in a concentration-dependent manner in the presence of carnosine. The potentiation of the force responses in all of the various experiments was seemingly totally explicable by the increase in Ca2+-sensitivity of the contractile apparatus caused by carnosine. Thus, these results show that carnosine potentiates force responses solely by 'sensitizing' the contractile apparatus to Ca2+ ions and under physiological conditions does not cause additional Ca2+ release from the SR.


Assuntos
Carnosina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Técnicas In Vitro , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Ratos , Ratos Long-Evans
9.
J Physiol ; 560(Pt 2): 451-68, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15308682

RESUMO

In this study we investigated the roles of cytoplasmic ATP as both an energy source and a regulatory molecule in various steps of the excitation-contraction (E-C) coupling process in fast-twitch skeletal muscle fibres of the rat. Using mechanically skinned fibres with functional E-C coupling, it was possible to independently alter cytoplasmic [ATP] and free [Mg2+]. Electrical field stimulation was used to elicit action potentials (APs) within the sealed transverse tubular (T-) system, producing either twitch or tetanic (50 Hz) force responses. Measurements were also made of the amount of Ca2+ released by an AP in different cytoplasmic conditions. The rate of force development and relaxation of the contractile apparatus was measured using rapid step changes in [Ca2+]. Twitch force decreased substantially (approximately 30%) at 2 mm ATP compared to the level at 8 mm ATP, whereas peak tetanic force only declined by approximately 10% at 0.5 mm ATP. The rate of force development of the twitch and tetanus was slowed only slightly at [ATP] > or = 0.5 mm, but was slowed greatly (> 6-fold) at 0.1 mm ATP, the latter being due primarily to slowing of force development by the contractile apparatus. AP-induced Ca2+ release was decreased by approximately 10 and 20% at 1 and 0.5 mm ATP, respectively, and by approximately 40% by raising the [Mg2+] to 3 mm. Adenosine inhibited Ca2+ release and twitch responses in a manner consistent with its action as a competitive weak agonist for the ATP regulatory site on the ryanodine receptor (RyR). These findings show that (a) ATP is a limiting factor for normal voltage-sensor activation of the RyRs, and (b) large reductions in cytoplasmic [ATP], and concomitant elevation of [Mg2+], substantially inhibit E-C coupling and possibly contribute to muscle fatigue in fast-twitch fibres in some circumstances.


Assuntos
Trifosfato de Adenosina/metabolismo , Citoplasma/metabolismo , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia , Adenosina/farmacologia , Trifosfato de Adenosina/administração & dosagem , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Técnicas In Vitro , Magnésio/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Concentração Osmolar , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...