Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 352(6292): aad1210, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27313051

RESUMO

The NLRP3 inflammasome controls interleukin-1ß maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4(+) T cells and initiates caspase-1-dependent interleukin-1ß secretion, thereby promoting interferon-γ production and T helper 1 (T(H)1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to "innate immune cells" but is an integral component of normal adaptive T(H)1 responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte/metabolismo , Complemento C5a/imunologia , Inflamassomos/imunologia , Interferon gama/biossíntese , Células Th1/imunologia , Imunidade Adaptativa , Animais , Comunicação Autócrina , Proteínas de Transporte/genética , Ativação do Complemento , Síndromes Periódicas Associadas à Criopirina/imunologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Imunidade Inata , Inflamação/imunologia , Proteína Cofatora de Membrana/imunologia , Camundongos , Camundongos Mutantes , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/metabolismo , Receptor da Anafilatoxina C5a/agonistas , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Antígenos de Linfócitos T/agonistas , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/metabolismo
2.
Pathog Dis ; 74(2)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26676260

RESUMO

Chlamydia trachomatis causes sexually transmitted diseases with infertility, pelvic inflammatory disease and neonatal pneumonia as complications. The duration of urogenital mouse models with the strict mouse pathogen C. muridarum addressing vaginal shedding, pathological changes of the upper genital tract or infertility is rather long. Moreover, vaginal C. trachomatis application usually does not lead to the complications feared in women. A fast-to-perform mouse model is urgently needed to analyze new antibiotics, vaccine candidates, immune responses (in gene knockout animals) or mutants of C. trachomatis. To complement the valuable urogenital model with a much faster and quantifiable screening method, we established an optimized lung infection model for the human intracellular bacterium C. trachomatis serovar D (and L2) in immunocompetent C57BL/6J mice. We demonstrated its usefulness by sensitive determination of antibiotic effects characterizing advantages and limitations achievable by early or delayed short tetracycline treatment and single-dose azithromycin application. Moreover, we achieved partial acquired protection in reinfection with serovar D indicating usability for vaccine studies, and showed a different course of disease in absence of complement factor C3. Sensitive monitoring parameters were survival rate, body weight, clinical score, bacterial load, histological score, the granulocyte marker myeloperoxidase, IFN-γ, TNF-α, MCP-1 and IL-6.


Assuntos
Antibacterianos/uso terapêutico , Vacinas Bacterianas/imunologia , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/fisiologia , Pneumonia por Clamídia/tratamento farmacológico , Pneumonia por Clamídia/prevenção & controle , Interações Hospedeiro-Patógeno , Animais , Antibacterianos/farmacologia , Carga Bacteriana , Biópsia , Linhagem Celular , Pneumonia por Clamídia/microbiologia , Pneumonia por Clamídia/mortalidade , Complemento C3/genética , Complemento C3/imunologia , Citocinas/biossíntese , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina G/imunologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Peroxidase/metabolismo
3.
Pathog Dis ; 73(1): 1-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25853997

RESUMO

The obligate intracellular bacterium Chlamydia (C.) pneumoniae causes respiratory infections and is associated with vascular diseases. To elucidate how temperature and host cells used for propagation alter chlamydial virulence, C. pneumoniae CWL0129 (Cpn) was cultured at 35 or 37°C in two different cell lines and then applied to mice. These mice infected with differentially propagated chlamydiae showed differences in clinical score, body weight and inflammatory cytokines in the lung. Our study demonstrates that Cpn cultured at 37°C in hamster fibroblast BHK-21 are able to colonize the mouse lung faster and better, and induce stronger symptoms and cytokine induction than bacteria cultured at 35°C. The temperature-triggered virulence alteration could not be observed for Cpn propagated in HeLa cells and was independent of host cell protein synthesis. Transcriptome analysis did not reveal temperature-induced effects on chlamydial gene expression, suggesting that the observed virulence changes are regulated on a different, so far unknown level. Preculture close to the central body temperature of its warm-blooded human or murine host might 'prepare' Cpn for subsequent in vivo infection. Our identification of culture-dependent virulence alteration helps to establish an optimized mouse lung infection model for Cpn and provides the basis to further unravel the molecular mechanisms underlying chlamydial pathogenicity.


Assuntos
Infecções por Chlamydophila/patologia , Chlamydophila pneumoniae/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Pneumonia Bacteriana/patologia , Animais , Peso Corporal , Linhagem Celular , Infecções por Chlamydophila/microbiologia , Cricetinae , Citocinas/análise , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/microbiologia , Índice de Gravidade de Doença , Temperatura , Virulência
4.
Toxins (Basel) ; 7(2): 621-37, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25690695

RESUMO

The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5) antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia.


Assuntos
Chlamydia trachomatis/enzimologia , Citotoxinas/fisiologia , Glucosiltransferases/fisiologia , Motivos de Aminoácidos , Ciclo Celular/genética , Movimento Celular/genética , Proliferação de Células , Chlamydia trachomatis/crescimento & desenvolvimento , Citotoxinas/genética , Glucosiltransferases/genética , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/genética , Mutação , Transfecção , Proteínas ras/antagonistas & inibidores
5.
Int J Med Microbiol ; 304(7): 877-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082204

RESUMO

The distinctive and unique features of the avian and mammalian zoonotic pathogen Chlamydia (C.) psittaci include the fulminant course of clinical disease, the remarkably wide host range and the high proportion of latent infections that are not leading to overt disease. Current knowledge on associated diseases is rather poor, even in comparison to other chlamydial agents. In the present paper, we explain and summarize the major findings of a national research network that focused on the elucidation of host-pathogen interactions in vitro and in animal models of C. psittaci infection, with the objective of improving our understanding of genomics, pathology, pathophysiology, molecular pathogenesis and immunology, and conceiving new approaches to therapy. We discuss new findings on comparative genome analysis, the complexity of pathophysiological interactions and systemic consequences, local immune response, the role of the complement system and antigen presentation pathways in the general context of state-of-the-art knowledge on chlamydial infections in humans and animals and single out relevant research topics to fill remaining knowledge gaps on this important yet somewhat neglected pathogen.


Assuntos
Chlamydophila psittaci/genética , Chlamydophila psittaci/imunologia , Interações Hospedeiro-Patógeno , Patologia Clínica , Psitacose/imunologia , Psitacose/patologia , Animais , Chlamydophila psittaci/patogenicidade , Modelos Animais de Doenças , Genômica , Humanos , Psitacose/microbiologia
6.
Infect Immun ; 82(8): 3154-63, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842924

RESUMO

Hydrosalpinx is a pathological hallmark of tubal infertility associated with chlamydial infection. However, the mechanisms of hydrosalpinx remain unknown. Here, we report that complement factor 5 (C5) contributes significantly to chlamydial induction of hydrosalpinx. Mice lacking C5 (C5(-/-)) failed to develop any hydrosalpinx, while ∼42% of the corresponding wild-type mice (C5(+/+)) did so following intravaginal infection with Chlamydia muridarum. Surprisingly, deficiency in C3 (C3(-/-)), an upstream component of the complement system, did not affect mouse susceptibility to chlamydial induction of hydrosalpinx. Interestingly, C5 activation was induced by chlamydial infection in oviducts of C3(-/-) mice, explaining why the C3(-/-) mice remained susceptible to chlamydial induction of hydrosalpinx. Similar levels of live chlamydial organisms were recovered from oviduct tissues of both C5(-/-) and C5(+/+) mice, suggesting that C5 deficiency did not affect C. muridarum ascending infection. Furthermore, C5(-/-) mice were still more resistant to hydrosalpinx induction than C5(+/+) mice, even when live C. muridarum organisms were directly delivered into the upper genital tract, both confirming the role of C5 in promoting hydrosalpinx and indicating that the C5-facilitated hydrosalpinx was not due to enhancement of ascending infection. The C5(-/-) mice displayed significantly reduced lumenal inflammatory infiltration and cytokine production in oviduct tissue, suggesting that C5 may contribute to chlamydial induction of hydrosalpinx by enhancing inflammatory responses.


Assuntos
Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/imunologia , Complemento C3/imunologia , Complemento C5/imunologia , Salpingite/microbiologia , Salpingite/patologia , Animais , Complemento C5/genética , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout
7.
Infect Immun ; 82(6): 2460-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24686060

RESUMO

Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3(-/-) mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3(-/-) mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3(-/-) mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3(-/-) blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR(-/-) mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity.


Assuntos
Cápsulas Bacterianas/fisiologia , Proteínas do Sistema Complemento/fisiologia , Proteínas Hemolisinas/fisiologia , Streptococcus suis/fisiologia , Anafilatoxinas/fisiologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cavidade Nasal/microbiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/mortalidade , Streptococcus suis/patogenicidade , Virulência
8.
J Infect Dis ; 209(8): 1269-78, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24273177

RESUMO

BACKGROUND: The complement system protects against extracellular pathogens and links innate and adaptive immunity. In this study, we investigated the anaphylatoxin C3a receptor (C3aR) in Chlamydia psittaci lung infection and elucidated C3a-dependent adaptive immune mechanisms. METHODS: Survival, body weight, and clinical score were monitored in primary mouse infection and after serum transfer. Bacterial load, histology, cellular distribution, cytokines, antibodies, and lymphocytes were analyzed. RESULTS: C3aR(-/-) mice showed prolonged pneumonia with decreased survival, lower weight, and higher clinical score. Compared to wild-type mice bacterial clearance was impaired, and inflammatory parameters were increased. In lung-draining lymph nodes of C3aR(-/-) mice the total number of B cells, CD4(+) T cells, and Chlamydia-specific IFN-γ(+) (CD4(+) or CD8(+)) cells was reduced upon infection, and the mice were incapable of Chlamydia-specific immunoglobulin M or immunoglobulin G production. Performed before infection, transfer of hyperimmune serum prolonged survival of C3aR(-/-) mice. CONCLUSIONS: C3a and its receptor are critical for defense against C. psittaci in mouse lung infection. In this model, C3a acts via its receptor as immune modulator. Enhancement of specific B and T cell responses upon infection with an intracellular bacterium were identified as hitherto unknown features of C3a/C3aR. These new functions might be of general immunological importance.


Assuntos
Imunidade Adaptativa/imunologia , Infecções por Chlamydophila/prevenção & controle , Chlamydophila psittaci/patogenicidade , Pulmão/microbiologia , Pneumonia Bacteriana/prevenção & controle , Receptores de Complemento/fisiologia , Linfócitos T/imunologia , Animais , Anticorpos Antibacterianos/sangue , Infecções por Chlamydophila/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Camundongos , Pneumonia Bacteriana/imunologia
9.
Infect Immun ; 81(9): 3366-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817611

RESUMO

Chlamydia pneumoniae is associated with chronic inflammatory lung diseases like bronchial asthma and chronic obstructive pulmonary disease. The existence of a causal link between allergic airway disease and C. pneumoniae is controversial. A mouse model was used to address the question of whether preceding C. pneumoniae lung infection and recovery modifies the outcome of experimental allergic asthma after subsequent sensitization with house dust mite (HDM) allergen. After intranasal infection, BALB/c mice suffered from pneumonia characterized by an increased clinical score, reduction of body weight, histopathology, and a bacterial load in the lungs. After 4 weeks, when infection had almost resolved clinically, HDM allergen sensitization was performed for another 4 weeks. Subsequently, mice were subjected to a methacholine hyperresponsiveness test and sacrificed for further analyses. As expected, after 8 weeks, C. pneumoniae-specific antibodies were detectable only in infected mice and the titer was significantly higher in the C. pneumoniae/HDM allergen-treated group than in the C. pneumoniae/NaCl group. Intriguingly, airway hyperresponsiveness and eosinophilia in bronchoalveolar lavage fluid were significantly lower in the C. pneumoniae/HDM allergen-treated group than in the mock/HDM allergen-treated group. We did observe a relationship between experimental asthma and chlamydial infection. Our results demonstrate an influence of sensitization to HDM allergen on the development of a humoral antibacterial response. However, our model demonstrates no increase in the severity of experimental asthma to HDM allergen as a physiological allergen after clinically resolved severe chlamydial lung infection. Our results rather suggest that allergic airway disease and concomitant cellular changes in mice are decreased following C. pneumoniae lung infection in this setting.


Assuntos
Alérgenos/imunologia , Chlamydophila pneumoniae/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pyroglyphidae/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/patologia , Animais , Asma/imunologia , Asma/microbiologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Infecções por Chlamydophila/imunologia , Infecções por Chlamydophila/microbiologia , Infecções por Chlamydophila/patologia , Eosinofilia/imunologia , Eosinofilia/microbiologia , Eosinofilia/patologia , Feminino , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/imunologia , Pneumonia/microbiologia , Pneumonia/patologia , Infecções Respiratórias/microbiologia
10.
PLoS One ; 7(11): e50327, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189195

RESUMO

The complement system modulates the intensity of innate and specific immunity. While it protects against infections by extracellular bacteria its role in infection with obligate intracellular bacteria, such as the avian and human pathogen Chlamydia (C.) psittaci, is still unknown. In the present study, knockout mice lacking C3 and thus all main complement effector functions were intranasally infected with C. psittaci strain DC15. Clinical parameters, lung histology, and cytokine levels were determined. A subset of infections was additionally performed with mice lacking C5 or C5a receptors. Complement activation occurred before symptoms of pneumonia appeared. Mice lacking C3 were ∼100 times more susceptible to the intracellular bacteria compared to wild-type mice, with all C3(-/-) mice succumbing to infection after day 9. At a low infective dose, C3(-/-) mice became severely ill after an even longer delay, the kinetics suggesting a so far unknown link of complement to the adaptive, protective immune response against chlamydiae. The lethal phenotype of C3(-/-) mice is not based on differences in the anti-chlamydial IgG response (which is slightly delayed) as demonstrated by serum transfer experiments. In addition, during the first week of infection, the absence of C3 was associated with partial protection characterized by reduced weight loss, better clinical score and lower bacterial burden, which might be explained by a different mechanism. Lack of complement functions downstream of C5 had little effect. This study demonstrates for the first time a strong and complex influence of complement effector functions, downstream of C3 and upstream of C5, on the outcome of an infection with intracellular bacteria, such as C. psittaci.


Assuntos
Chlamydophila psittaci/imunologia , Proteínas do Sistema Complemento/imunologia , Pneumonia/imunologia , Psitacose/imunologia , Animais , Carga Bacteriana , Líquido da Lavagem Broncoalveolar/imunologia , Ativação do Complemento/imunologia , Complemento C3/genética , Complemento C3/imunologia , Complemento C3/metabolismo , Complemento C5/imunologia , Complemento C5/metabolismo , Proteínas do Sistema Complemento/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Granulócitos/imunologia , Granulócitos/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Peroxidase/metabolismo , Pneumonia/genética , Pneumonia/microbiologia , Pneumonia/mortalidade , Psitacose/genética , Psitacose/microbiologia , Psitacose/mortalidade , Receptores de Complemento/genética , Receptores de Complemento/imunologia , Baço/imunologia , Baço/microbiologia
11.
J Mol Microbiol Biotechnol ; 19(3): 134-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20924199

RESUMO

With only 688 protein-coding genes, Mycoplasma pneumoniae is one of the smallest self-replicating organisms. These bacteria use glycolysis as the major pathway for ATP production by substrate-level phosphorylation, suggesting that this pathway must be optimized to high efficiency. In this study, we have investigated the interactions between glycolytic enzymes using the bacterial adenylate cyclase-based two-hybrid system. We demonstrate that most of the glycolytic enzymes perform self-interactions, suggesting that they form dimers or other oligomeric forms. In addition, enolase was identified as the central glycolytic enzyme of M. pneumoniae due to its ability to directly interact with all other glycolytic enzymes. Our results support the idea of the formation of a glycolytic complex in M. pneumoniae and we suggest that the formation of this complex might ensure higher fluxes through the glycolytic pathway than would be possible with isolated non-interacting enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Mycoplasma pneumoniae/enzimologia , Proteínas de Bactérias/genética , Glicólise/genética , Mycoplasma pneumoniae/genética , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
EMBO J ; 29(12): 1988-2001, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20502438

RESUMO

DivIVA is a conserved protein in Gram-positive bacteria that localizes at the poles and division sites, presumably through direct sensing of membrane curvature. DivIVA functions as a scaffold and is vital for septum site selection during vegetative growth and chromosome anchoring during sporulation. DivIVA deletion causes filamentous growth in Bacillus subtilis, whereas overexpression causes hyphal branching in Streptomyces coelicolor. We have determined the crystal structure of the N-terminal (Nt) domain of DivIVA, and show that it forms a parallel coiled-coil. It is capped with two unique crossed and intertwined loops, exposing hydrophobic and positively charged residues that we show here are essential for membrane binding. An intragenic suppressor introducing a positive charge restores membrane binding after mutating the hydrophobic residues. We propose that the hydrophobic residues insert into the membrane and that the positively charged residues bind to the membrane surface. A low-resolution crystal structure of the C-terminal (Ct) domain displays a curved tetramer made from two parallel coiled-coils. The Nt and Ct parts were then merged into a model of the full length, 30 nm long DivIVA protein.


Assuntos
Bacillus subtilis/química , Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...