Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7422, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523791

RESUMO

Climate change is expected to have impacts on the balance of global food trade networks and food security. Thus, seasonal forecasts of precipitation and temperature are an essential tool for stakeholders to make timely choices regarding the strategies required to maximize their expected cereal yield outcomes. The availability of state-of-the-art seasonal forecasts such as the European Centre for Medium-Range Weather Forecasts (ECMWF) system 5 (SEAS5) may be an asset to help decision making. However, uncertainties and reduced skill may hamper the use of seasonal forecasts in several applications. Hence, in this work, we aim to understand the added value of such dynamical forecasts when compared to persistent anomalies of climate conditions used to predict the production of wheat and barley yields. With that in mind, empirical models relating annual wheat and barley yields in Spain to monthly values of precipitation and temperature are developed by taking advantage of ECMWF ERA5 reanalysis. Then, dynamical and persistence forecasts are issued at different lead times, and the skill of the subsequent forecasted yield is verified through probabilistic metrics. The results presented in this study demonstrate two different outcomes: (1) wheat and barley yield anomaly forecasts (dynamical and persistent) start to gain skill later in the season (typically from April onwards); and (2) the added value of using the SEAS5 forecast as an alternative to persistence ranges from 6 to 16%, with better results in the southern Spanish regions.


Assuntos
Grão Comestível , Tempo (Meteorologia) , Previsões , Estações do Ano , Temperatura , Triticum
2.
J Geophys Res Atmos ; 126(15): e2020JD034163, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35866004

RESUMO

In this study, we show that limitations in the representation of land cover and vegetation seasonality in the European Centre for Medium-Range Weather Forecasting (ECMWF) model are partially responsible for large biases (up to ∼10°C, either positive or negative depending on the region) on the simulated daily maximum land surface temperature (LST) with respect to satellite Earth Observations (EOs) products from the Land Surface Analysis Satellite Application Facility. The error patterns were coherent in offline land-surface and coupled land-atmosphere simulations, and in ECMWF's latest generation reanalysis (ERA5). Subsequently, we updated the ECMWF model's land cover characterization leveraging on state-of-the-art EOs-the European Space Agency Climate Change Initiative land cover data set and the Copernicus Global Land Services leaf area index. Additionally, we tested a clumping parameterization, introducing seasonality to the effective low vegetation coverage. The updates reduced the overall daily maximum LST bias and unbiased root-mean-squared errors. In contrast, the implemented updates had a neutral impact on daily minimum LST. Our results also highlighted the complex regional heterogeneities in the atmospheric sensitivity to land cover and vegetation changes, particularly with issues emerging over eastern Brazil and northeastern Asia. These issues called for a re-calibration of model parameters (e.g., minimum stomatal resistance, roughness length, rooting depth), along with a revision of several model assumptions (e.g., snow shading by high vegetation).

3.
J Hydrometeorol ; 19(No 2): 375-392, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29714354

RESUMO

We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...