Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39066343

RESUMO

Feline infectious peritonitis (FIP) is a devastating and often fatal disease caused by feline coronavirus (FCoV). Currently, there is no widely used vaccine for FIP, and many attempts using a variety of platforms have been largely unsuccessful due to the disease's highly complicated pathogenesis. One such complication is antibody-dependent enhancement (ADE) seen in FIP, which occurs when sub-neutralizing antibody responses to viral surface proteins paradoxically enhance disease. A novel vaccine strategy is presented here that can overcome the risk of ADE by instead using a lipid nanoparticle-encapsulated mRNA encoding the transcript for the internal structural nucleocapsid (N) FCoV protein. Both wild type and, by introduction of silent mutations, GC content-optimized mRNA vaccines targeting N were developed. mRNA durability in vitro was characterized by quantitative reverse-transcriptase PCR and protein expression by immunofluorescence assay for one week after transfection of cultured feline cells. Both mRNA durability and protein production in vitro were improved with the GC-optimized construct as compared to wild type. Immune responses were assayed by looking at N-specific humoral (by ELISA) and stimulated cytotoxic T cell (by flow cytometry) responses in a proof-of-concept mouse vaccination study. These data together demonstrate that an LNP-mRNA FIP vaccine targeting FCoV N is stable in vitro, capable of eliciting an immune response in mice, and provides justification for beginning safety and efficacy trials in cats.

2.
J Infect Dis ; 218(1): 124-132, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29701813

RESUMO

Background: New methods to increase measles and rubella (MR) vaccination coverage are needed to achieve global and regional MR elimination goals. Methods: Here, we developed microneedle (MN) patches designed to administer MR vaccine by minimally trained personnel, leave no biohazardous sharps waste, remove the need for vaccine reconstitution, and provide thermostability outside the cold chain. This study evaluated the immunogenicity of MN patches delivering MR vaccine to infant rhesus macaques. Results: Protective titers of measles neutralizing antibodies (>120 mIU/mL) were detected in 100% of macaques in the MN group and 75% of macaques in the subcutaneous (SC) injection group. Rubella neutralizing antibody titers were >10 IU/mL for all groups. All macaques in the MN group were protected from challenge with wild-type measles virus, whereas 75% were protected in the SC group. However, vaccination by the MN or SC route was unable to generate protective immune responses to measles in infant macaques pretreated with measles immunoglobulin to simulate maternal antibody. Conclusions: These results show, for the first time, that MR vaccine delivered by MN patch generated protective titers of neutralizing antibodies to both measles and rubella in infant rhesus macaques and afforded complete protection from measles virus challenge.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Vacina contra Sarampo/administração & dosagem , Vacina contra Sarampo/imunologia , Sarampo/prevenção & controle , Vacina contra Rubéola/administração & dosagem , Vacina contra Rubéola/imunologia , Rubéola (Sarampo Alemão)/prevenção & controle , Administração Cutânea , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Feminino , Macaca mulatta , Masculino
3.
J Virol ; 87(2): 1150-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23152507

RESUMO

Alpha interferon (IFN-α) production is triggered when influenza virus RNA is detected by appropriate pattern recognition receptors in the host cell. IFN-α induces the expression of more than 300 interferon-stimulated genes (ISGs), and this blunts influenza virus replication. The human ISG MxA can inhibit influenza A virus replication in mouse cells by interfering with a step in the virus replication cycle after primary transcription of the negative-strand RNA genome to mRNA (J. Pavlovic, O. Haller, and P. Staeheli, J. Virol. 66:2564-2569, 1992). To determine the role of MxA in blocking human influenza A virus replication in primate cells, we manipulated MxA expression in rhesus kidney epithelial cells (LLC-MK(2)) and human lung carcinoma cells (A549). We found that IFN-α treatment prior to influenza virus infection suppressed virus replication and induced the expression of many ISGs, including MxA. However, IFN-α-mediated suppression of virus replication was abolished by small interfering RNA (siRNA) knockdown of MxA expression in IFN-treated cells. In addition, influenza virus replication was suppressed in Vero cells stably transfected with MxA. A strand-specific reverse transcription-PCR (RT-PCR) assay showed that positive-strand influenza virus mRNA and negative-strand genomic RNA (gRNA) accumulated to high levels at 8 h after infection in control Vero cells containing the empty vector. However, in Vero cells stably transfected with MxA positive-strand influenza virus mRNA, complementary positive-strand influenza virus genome RNA (cRNA) and influenza virus gRNA were drastically suppressed. Thus, in primate cells, MxA inhibits human seasonal influenza virus replication at a step prior to primary transcription of gRNA into mRNA. Taken together, these results demonstrate that MxA mediates control of influenza virus replication in primate cells treated with IFN-α.


Assuntos
Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Interferon-alfa/imunologia , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Macaca mulatta , Proteínas de Resistência a Myxovirus , RNA Viral/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...