Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36979561

RESUMO

Every year, the dengue virus and its principal mosquito vector, Aedes sp., have caused massive outbreaks, primarily in equatorial countries. The pre-existing techniques available for dengue detection are expensive and require trained personnel. Graphene and its derivatives have remarkable properties of electrical and thermal conductivity, and are flexible, light, and biocompatible, making them ideal platforms for biosensor development. The incorporation of these materials, along with appropriate nanomaterials, improves the quality of detection methods. Graphene can help overcome the difficulties associated with conventional techniques. In this review, we have given comprehensive details on current graphene-based diagnostics for dengue virus detection. We have also discussed state-of-the-art biosensing technologies and evaluated the advantages and disadvantages of the same.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Grafite , Nanoestruturas , Animais , Técnicas Biossensoriais/métodos
2.
Avicenna J Med Biotechnol ; 12(2): 77-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431791

RESUMO

BACKGROUND: Dengue burden is increasing day-by-day globally. A rapid, sensitive, cost-effective early diagnosis kit is the need of the hour. In this study, a label-free electrochemical immunosensor was proposed for dengue virus detection. A modified Polyaniline (PANI) coated Glassy Carbon (GC) electrode, immobilized with DENV NS1 antibody was used to detect the circulating DENV NS1 antigen in both spiked and infected sample. METHODS: Cloning, purification and expression of DENV NS1 protein in Escherichia coli (E. coli) was performed and sensor design, PANI modification on GC electrode surface by electrochemical polymerization and immobilization of NS1 antibody on the modified electrode surface was done and finally the analytical performance of the electrochemical immunosensor was done using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). RESULTS: CV and EIS were used to study and quantitate the circulating DENV antigen. The calibration curve showed wide linearity, good sensitivity (Slope=13.8% IpR/ml.ng -1) and distribution of data with a correlation coefficient (R) of 0.997. A lower Limit of Detection (LOD) was found to be 0.33 ng.ml -1 which encourages the applicability of the sensor. CONCLUSION: Thus, a PANI based new electrochemical immunosensor has been developed which has the potential to be further modified for the development of cost effective, point of care dengue diagnostic kit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...