Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
PLoS Pathog ; 12(10): e1005967, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27764250

RESUMO

IFI16 (gamma-interferon-inducible protein 16), a predominantly nuclear protein involved in transcriptional regulation, also functions as an innate immune response DNA sensor and induces the IL-1ß and antiviral type-1 interferon-ß (IFN-ß) cytokines. We have shown that IFI16, in association with BRCA1, functions as a sequence independent nuclear sensor of episomal dsDNA genomes of KSHV, EBV and HSV-1. Recognition of these herpesvirus genomes resulted in IFI16 acetylation, BRCA1-IFI16-ASC-procaspase-1 inflammasome formation, cytoplasmic translocation, and IL-1ß generation. Acetylated IFI16 also interacted with cytoplasmic STING and induced IFN-ß. However, the identity of IFI16 associated nuclear proteins involved in STING activation and the mechanism is not known. Mass spectrometry of proteins precipitated by anti-IFI16 antibodies from uninfected endothelial cell nuclear lysate revealed that histone H2B interacts with IFI16. Single and double proximity ligation microscopy, immunoprecipitation, EdU-genome labeled virus infection, and chromatin immunoprecipitation studies demonstrated that H2B is associated with IFI16 and BRCA1 in the nucleus in physiological conditions. De novo KSHV and HSV-1 infection as well as latent KSHV and EBV infection induces the cytoplasmic distribution of H2B-IFI16, H2B-BRCA1 and IFI16-ASC complexes. Vaccinia virus (dsDNA) cytoplasmic replication didn't induce the redistribution of nuclear H2B-IFI16 or H2B into the cytoplasm. H2B is critical in KSHV and HSV-1 genome recognition by IFI16 during de novo infection. Viral genome sensing by IFI16-H2B-BRCA1 leads to BRCA1 dependent recruitment of p300, and acetylation of H2B and IFI16. BRCA1 knockdown or inhibition of p300 abrogated the acetylation of H2B-IFI16 or H2B. Ran-GTP protein mediated the translocation of acetylated H2B and IFI16 to the cytoplasm along with BRCA1 that is independent of IFI16-ASC inflammasome. ASC knockdown didn't affect the acetylation of H2B, its cytoplasmic transportation, and the association of STING with IFI16 and H2B during KSHV infection. Absence of H2B didn't affect IFI16-ASC association and cytoplasmic distribution and thus demonstrating that IFI16-H2B complex is independent of IFI16-ASC-procaspase-1-inflammasome complex formed during infection. The H2B-IFI16-BRCA1 complex interacted with cGAS and STING in the cytoplasm leading to TBK1 and IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-ß production. Silencing of H2B, cGAS and STING inhibited IFN-ß induction but not IL-1ß secretion, and cGAMP activity is significantly reduced by H2B and IFI16 knockdown during infection. Silencing of ASC inhibited IL-1ß secretion but not IFN-ß secretion during de novo KSHV and HSV-1 infection. These studies identify H2B as an innate nuclear sensor mediating a novel extra chromosomal function, and reveal that two IFI16 complexes mediate KSHV and HSV-1 genome recognition responses, with recognition by the IFI16-BRCA1-H2B complex resulting in IFN-ß responses and recognition by IFI16-BRCA1 resulting in inflammasome responses.


Assuntos
Genoma Viral , Infecções por Herpesviridae/imunologia , Histonas/imunologia , Interferon beta/imunologia , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologia , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Citoplasma/imunologia , Ensaio de Imunoadsorção Enzimática , Herpesviridae/imunologia , Humanos , Imunidade Inata , Imunoprecipitação , Inflamassomos/imunologia , Interferon beta/biossíntese , Microscopia de Fluorescência
5.
Antimicrob Agents Chemother ; 60(4): 2003-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26824938

RESUMO

Photodynamic inactivation ofLeishmaniaspp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency againstLeishmania tropicapromastigotes and axenic amastigotesin vitro The uptake of these PCs by bothLeishmaniastages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation ofLeishmaniaspp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitizedLeishmania tropicastrains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm(-2) Quantitative fluorescence assays based on the loss of GFP/CFSE from liveLeishmania tropicashowed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay.Leishmania tropicastrains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation ofLeishmaniaspp. for use as vaccines or vaccine carriers.


Assuntos
Aminas/farmacologia , Corantes Fluorescentes/farmacologia , Indóis/farmacologia , Leishmania tropica/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Aminas/síntese química , Sobrevivência Celular , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Corantes Fluorescentes/síntese química , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Indóis/síntese química , Concentração Inibidora 50 , Isoindóis , Leishmania tropica/genética , Leishmania tropica/crescimento & desenvolvimento , Leishmania tropica/metabolismo , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Relação Estrutura-Atividade , Succinimidas/metabolismo
6.
PLoS Pathog ; 11(7): e1005019, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134128

RESUMO

The IL-1ß and type I interferon-ß (IFN-ß) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1ß and IFN-ß production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1ß production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-ß production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1ß production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-ß production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the increased nuclear acetylation of IFI16 as a dynamic essential post-genome recognition event in the nucleus that is common to the IFI16-mediated innate responses of inflammasome induction and IFN-ß production during herpesvirus (KSHV, EBV, HSV-1) infections.


Assuntos
Infecções por Herpesviridae/metabolismo , Imunidade Inata/imunologia , Interferon beta/biossíntese , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transporte Proteico/imunologia , Acetilação , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Citoplasma/imunologia , Citoplasma/metabolismo , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/metabolismo , Humanos , Imunoprecipitação , Inflamassomos/imunologia , Inflamassomos/metabolismo , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Transfecção
7.
PLoS Pathog ; 11(6): e1005030, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26121674

RESUMO

The innate immune system pattern recognition receptors (PRR) are the first line of host defenses recognizing the various pathogen- or danger-associated molecular patterns and eliciting defenses by regulating the production of pro-inflammatory cytokines such as IL-1ß, IL-18 or interferon ß (IFN-ß). NOD-like receptors (NLRs) and AIM2-like receptors (ALRs) are cytoplasmic inflammasome sensors of foreign molecules, including DNA. IFI16, a sequence-independent nuclear innate sensor ALR, recognizes episomal dsDNA genomes of herpes viruses such as KSHV, EBV, and HSV-1 in the infected cell nuclei, forms an inflammasome complex with ASC and procaspase1, and relocates into the cytoplasm leading into Caspase-1 and IL-1ß generation. IFI16 also induces IFN-ß during HSV-1 infection via the cytoplasmic STING-TBK1-IRF3 pathway. Thus far, whether IFI16 recognizes foreign DNA directly or utilizes other host protein(s) is unknown. Here, we demonstrate that BRCA1, a DNA damage repair sensor and transcription regulator, is in complex with IFI16 in the host cell nucleus, and their association increases in the presence of nuclear viral genomes during de novo KSHV, EBV and HSV-1 infection, and in latent KSHV or EBV infection, but not by DNA damage responses (DDR) induced by bleomycin and vaccinia virus cytoplasmic dsDNA. BRCA1 is a constituent of the triggered IFI16-inflammasome and is translocated into the cytoplasm after genome recognition along with the IFI16-inflammasome. The absence of BRCA1 abrogated IFI16-viral genome association, inflammasome assembly, IFI16 cytoplasmic localization, and Caspase-1 and IL-1ß production. The absence of BRCA1 also abolished the cytoplasmic IFI16-STING interaction, downstream IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-ß production during de novo KSHV and HSV-1 infection. These findings highlight that BRCA1 plays a hitherto unidentified innate immunomodulatory role by facilitating nuclear foreign DNA sensing by IFI16, subsequent assembly and cytoplasmic distribution of IFI16-inflammasomes leading into IL-1ß formation and the induction of IFN-ß via cytoplasmic signaling through IFI16-STING, TBK1 and IRF3.


Assuntos
Proteína BRCA1/metabolismo , DNA Viral/genética , Herpesvirus Humano 1/genética , Inflamassomos/metabolismo , Interferon beta/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Transdução de Sinais/genética
8.
Oncol Rep ; 34(1): 43-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25997448

RESUMO

Overexpression and hyperactivation of lymphocyte-specific protein tyrosine kinase (Lck) have been associated with leukemia development. We previously showed that, other than its known function as a cytoplasmic signal transducer, Lck also acts as a nuclear transcription factor in mouse leukemic cells. In the present study, we demonstrated the presence of nuclear Lck in human leukemic T cells and in primary cells. We further established a positive correlation between Lck nuclear localization and its kinase activity. Proteomic analysis identified CR6-interacting factor 1 (CRIF1) as one of the Lck-interacting proteins. CRIF1 and Lck association in the nucleus was confirmed both by immunofluorescence microscopy and co-immunoprecipitation in human leukemic T cells. Close-range interaction between Lck and CRIF1 was validated by in situ proximity ligation assay (PLA). Consistent with the role of nuclear CRIF1 as a tumor suppressor, CRIF1 silencing promotes leukemic T cell survival in the absence of growth factors. This protective effect can be recapitulated by endogenous Lck or reconstituted Lck in leukemic T cells. All together, our results support a novel function of nuclear Lck in promoting human leukemic T cell survival through interaction with a tumor suppressor. It has important implications in defining a paradigm shift of non-canonical protein tyrosine kinase signaling.


Assuntos
Proteínas de Ciclo Celular/genética , Leucemia/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteínas Nucleares/genética , Mapas de Interação de Proteínas/genética , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Humanos , Leucemia/patologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Fosforilação , Proteômica , Linfócitos T/metabolismo , Linfócitos T/patologia
9.
J Virol ; 89(15): 7874-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995248

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. We have previously shown that KSHV utilizes the host transcription factor Nrf2 to aid in infection of endothelial cells and oncogenesis. Here, we investigate the role of Nrf2 in PEL and PEL-derived cell lines and show that KSHV latency induces Nrf2 protein levels and transcriptional activity through the COX-2/PGE2/EP4/PKCζ axis. Next-generation sequencing of KSHV transcripts in the PEL-derived BCBL-1 cell line revealed that knockdown of this activated Nrf2 results in global elevation of lytic genes. Nrf2 inhibition by the chemical brusatol also induces lytic gene expression. Both Nrf2 knockdown and brusatol-mediated inhibition induced KSHV lytic reactivation in BCBL-1 cells. In a series of follow-up experiments, we characterized the mechanism of Nrf2-mediated regulation of KSHV lytic repression during latency. Biochemical assays showed that Nrf2 interacted with KSHV latency-associated nuclear antigen 1 (LANA-1) and the host transcriptional repressor KAP1, which together have been shown to repress lytic gene expression. Promoter studies showed that although Nrf2 alone induces the open reading frame 50 (ORF50) promoter, its association with LANA-1 and KAP1 abrogates this effect. Interestingly, LANA-1 is crucial for efficient KAP1/Nrf2 association, while Nrf2 is essential for LANA-1 and KAP1 recruitment to the ORF50 promoter and its repression. Overall, these results suggest that activated Nrf2, LANA-1, and KAP1 assemble on the ORF50 promoter in a temporal fashion. Initially, Nrf2 binds to and activates the ORF50 promoter during early de novo infection, an effect that is exploited during latency by LANA-1-mediated recruitment of the host transcriptional repressor KAP1 on Nrf2. Cell death assays further showed that Nrf2 and KAP1 knockdown induce significant cell death in PEL cell lines. Our studies suggest that Nrf2 modulation through available oral agents is a promising therapeutic approach in the treatment of KSHV-associated malignancies. IMPORTANCE: KS and PEL are aggressive KSHV-associated malignancies with moderately effective, highly toxic chemotherapies. Other than ganciclovir and alpha interferon (IFN-α) prophylaxis, no KSHV-associated chemotherapy targets the underlying infection, a major oncogenic force. Hence, drugs that selectively target KSHV infection are necessary to eradicate the malignancy while sparing healthy cells. We recently showed that KSHV infection of endothelial cells activates the transcription factor Nrf2 to promote an environment conducive to infection and oncogenesis. Nrf2 is modulated through several well-tolerated oral agents and may be an important target in KSHV biology. Here, we investigate the role of Nrf2 in PEL and demonstrate that Nrf2 plays an important role in KSHV gene expression, lytic reactivation, and cell survival by interacting with the host transcriptional repressor KAP1 and the viral latency-associated protein LANA-1 to mediate global lytic gene repression and thus cell survival. Hence, targeting Nrf2 with available therapies is a viable approach in the treatment of KSHV malignancies.


Assuntos
Antígenos Virais/metabolismo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/metabolismo , Linfoma de Efusão Primária/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sarcoma de Kaposi/metabolismo , Antígenos Virais/genética , Regulação para Baixo , Herpesvirus Humano 8/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Linfoma de Efusão Primária/genética , Linfoma de Efusão Primária/virologia , Fator 2 Relacionado a NF-E2/genética , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Repressoras/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Transativadores/genética , Transativadores/metabolismo , Proteína 28 com Motivo Tripartido
10.
PLoS Pathog ; 10(11): e1004503, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375629

RESUMO

Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-ß (IFN-ß), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification.


Assuntos
Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 1/fisiologia , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Replicação Viral , Linhagem Celular Tumoral , Células HEK293 , Histonas/genética , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética
11.
PLoS Pathog ; 10(10): e1004460, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340789

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS) and primary effusion B-cell lymphoma. KSHV induces reactive oxygen species (ROS) early during infection of human dermal microvascular endothelial (HMVEC-d) cells that are critical for virus entry. One of the downstream targets of ROS is nuclear factor E2-related factor 2 (Nrf2), a transcription factor with important anti-oxidative functions. Here, we show that KS skin lesions have high Nrf2 activity compared to healthy skin tissue. Within 30 minutes of de novo KSHV infection of HMVEC-d cells, we observed Nrf2 activation through ROS-mediated dissociation from its inhibitor Keap1, Ser-40 phosphorylation, and subsequent nuclear translocation. KSHV binding and consequent signaling through Src, PI3-K and PKC-ζ were also important for Nrf2 stability, phosphorylation and transcriptional activity. Although Nrf2 was dispensable for ROS homeostasis, it was essential for the induction of COX-2, VEGF-A, VEGF-D, Bcl-2, NQO1, GCS, HO1, TKT, TALDO and G6PD gene expression in KSHV-infected HMVEC-d cells. The COX-2 product PGE2 induced Nrf2 activity through paracrine and autocrine signaling, creating a feed-forward loop between COX-2 and Nrf2. vFLIP, a product of KSHV latent gene ORF71, induced Nrf2 and its target genes NQO1 and HO1. Activated Nrf2 colocalized with the KSHV genome as well as with the latency protein LANA-1. Nrf2 knockdown enhanced ORF73 expression while reducing ORF50 and other lytic gene expression without affecting KSHV entry or genome nuclear delivery. Collectively, these studies for the first time demonstrate that during de novo infection, KSHV induces Nrf2 through intricate mechanisms involving multiple signal molecules, which is important for its ability to manipulate host and viral genes, creating a microenvironment conducive to KSHV infection. Thus, Nrf2 is a potential attractive target to intervene in KSHV infection and the associated maladies.


Assuntos
Células Endoteliais/virologia , Herpesvirus Humano 8 , Fator 2 Relacionado a NF-E2/metabolismo , Sarcoma de Kaposi/virologia , Internalização do Vírus , Ciclo-Oxigenase 2/metabolismo , Humanos , Transporte Proteico/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
PLoS Pathog ; 10(10): e1004389, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299066

RESUMO

Kaposi's sarcoma associated herpesvirus (KSHV) is etiologically associated with endothelial Kaposi's sarcoma (KS) and B-cell proliferative primary effusion lymphoma (PEL), common malignancies seen in immunocompromised HIV-1 infected patients. The progression of these cancers occurs by the proliferation of cells latently infected with KSHV, which is highly dependent on autocrine and paracrine factors secreted from the infected cells. Glutamate and glutamate receptors have emerged as key regulators of intracellular signaling pathways and cell proliferation. However, whether they play any role in the pathological changes associated with virus induced oncogenesis is not known. Here, we report the first systematic study of the role of glutamate and its metabotropic glutamate receptor 1 (mGluR1) in KSHV infected cell proliferation. Our studies show increased glutamate secretion and glutaminase expression during de novo KSHV infection of endothelial cells as well as in KSHV latently infected endothelial and B-cells. Increased mGluR1 expression was detected in KSHV infected KS and PEL tissue sections. Increased c-Myc and glutaminase expression in the infected cells was mediated by KSHV latency associated nuclear antigen 1 (LANA-1). In addition, mGluR1 expression regulating host RE-1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF) was retained in the cytoplasm of infected cells. KSHV latent protein Kaposin A was also involved in the over expression of mGluR1 by interacting with REST in the cytoplasm of infected cells and by regulating the phosphorylation of REST and interaction with ß-TRCP for ubiquitination. Colocalization of Kaposin A with REST was also observed in KS and PEL tissue samples. KSHV infected cell proliferation was significantly inhibited by glutamate release inhibitor and mGluR1 antagonists. These studies demonstrated that elevated glutamate secretion and mGluR1 expression play a role in KSHV induced cell proliferation and suggest that targeting glutamate and mGluR1 is an attractive therapeutic strategy to effectively control the KSHV associated malignancies.


Assuntos
Proliferação de Células , Glutamatos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sarcoma de Kaposi/virologia , Linfócitos B/virologia , Linhagem Celular , Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Infecções por Herpesviridae/virologia , Humanos , Receptores de Glutamato Metabotrópico/imunologia , Sarcoma de Kaposi/metabolismo , Latência Viral/imunologia
13.
J Virol ; 88(23): 13858-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25253349

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3ß1, αVß3, and αVß5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE: Eukaryotic cell adaptor molecules, without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , Células Endoteliais/virologia , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Internalização do Vírus , Células Cultivadas , Humanos
14.
PLoS One ; 9(5): e97580, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831807

RESUMO

Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive "niches". Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.


Assuntos
Autofagia , Neoplasias da Mama/metabolismo , Dano ao DNA , Células Epiteliais/citologia , Exossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilcisteína/química , Mama/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , DNA/química , Reparo do DNA , Feminino , Humanos , Células MCF-7 , Fosforilação
15.
Mol Oncol ; 8(3): 483-507, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24457100

RESUMO

Angiogenin (ANG), a 14-kDa pro-angiogenic secreted protein, has been shown to play a role in cell migration and tumor invasion, which involve proteolytic cleavage of plasminogen to generate plasmin. However, the mechanism by which ANG regulates plasmin formation and cell migration was not known. Our studies here detected elevated levels of secreted and cell surface-bound ANG in highly invasive metastatic breast cancer cells. ANG was also detected at very high levels in the tumor cells in infiltrating ductal carcinomas. By immunofluorescence and immunoprecipitation analysis, ANG was detected at the leading edges of the cell surfaces where it colocalized and interacted with members of the plasminogen activation system (PAS) such as annexin A2 (A2), calpactin (S100-A10) and urokinase plasminogen activator receptor (uPAR). Analysis of lipid raft (LR) and non-lipid raft (NLR) regions of the cell membranes showed the predominance of ANG, A2 and S100-A10 in the LR regions. In contrast, uPAR was detected predominantly in the NLR fractions, suggesting that ANG interacts with uPAR at the junctions of LR and NLR regions. ANG knockdown in T47D and MDA-MB-231 breast cancer cell lines did not affect the cellular expression of A2, S100-A10 and uPAR but decreased cell migration and plasmin formation. Neutralization of ANG with monoclonal antibodies similarly decreased the migration of MDA-MB-231 cells. In the presence of ANG, uPAR was observed to interact with uPA, which is necessary for plasmin formation. Conversely, in the absence of ANG, uPAR did not interact with uPA and FAK and Src kinases were observed to be dephosphorylated. Exogenous addition of recombinant ANG to ANG knocked down MDA-MB-231 cells restored FAK phosphorylation, uPAR interactions with uPA, plasmin formation as well as migration of these cells. Taken together, our results identified a novel role for ANG as a member of the uPAR interactome that facilitates the interaction of uPAR with uPA, leading to plasmin formation and cell migration necessary for tumor invasion and metastasis of breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Plasminogênio/metabolismo , Mapas de Interação de Proteínas , Ribonuclease Pancreático/metabolismo , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Invasividade Neoplásica/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
16.
J Virol ; 88(5): 2821-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352470

RESUMO

UNLABELLED: The DNA damage response (DDR) that evolved to repair host cell DNA damage also recognizes viral DNA entering the nucleus during infections. Here, we investigated the modulation of DDR signaling during de novo infection of primary endothelial cells by Kaposi's sarcoma-associated herpesvirus (KSHV). Phosphorylation of representative DDR-associated proteins, such as ataxia telangiectasia mutated (ATM) and H2AX, was induced as early as 30 min (0.5 h) postinfection and persisted during in vitro KSHV latency. Phosphorylated H2AX (γH2AX) colocalized at 30 min (0.5 h) with the KSHV genome entering the nuclei. Total H2AX protein levels also increased, and the increase was attributed to a decrease in degradative H2AX Lys48-linked polyubiquitination with a concomitant increase in Lys63-linked polyubiquitination that was shown to increase protein stability. ATM and H2AX phosphorylation and γH2AX nuclear foci were also induced by UV-inactivated KSHV, which ceased at later times of infection. Inhibition of ATM kinase activity by KU-55933 and H2AX knockdown by small interfering RNA significantly reduced the expression of the KSHV latency-associated nuclear antigen 1 (LANA-1; ORF73) and LANA-1 nuclear puncta. Knockdown of H2AX also resulted in a >80% reduction in the nuclear KSHV DNA copy numbers. Similar results were also observed in ATM-negative cells, although comparable levels of viral DNA entered ATM-negative and ATM-positive cell nuclei. In contrast, knockdown of CHK1 and CHK2 did not affect ORF73 expression. Collectively, these results demonstrate that KSHV induces ATM and H2AX, a selective arm of the DDR, for the establishment and maintenance of its latency during de novo infection of primary endothelial cells. IMPORTANCE: Eukaryotic cells mount a DNA damage response (DDR) to sense and repair different types of cellular DNA damage. In addition, DDR also recognizes exogenous genetic material, such as the viral DNA genome entering the nucleus during infections. The present study was undertaken to determine whether de novo Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates DDR. Our results demonstrate that early during de novo infection of primary endothelial cells, KSHV induces a selective arm of DDR signaling, such as the ATM kinase and its downstream target, H2AX, which are essential for KSHV's latent gene expression and the establishment of latency. These studies suggest that targeting ATM and H2AX could serve as an attractive strategy to block the establishment of KSHV latent infection and the associated malignancies.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Células Endoteliais/virologia , Herpesvirus Humano 8/fisiologia , Histonas/metabolismo , Latência Viral , Antígenos Nucleares/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Expressão Gênica , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Genoma Viral , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Histonas/genética , Humanos , Modelos Biológicos , Morfolinas/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Pironas/farmacologia , Transdução de Sinais , Proteínas Virais/genética , Latência Viral/genética
17.
J Virol ; 87(21): 11806-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986578

RESUMO

Angiogenin (ANG) is a 14-kDa multifunctional proangiogenic secreted protein whose expression level correlates with the aggressiveness of several tumors. We observed increased ANG expression and secretion in endothelial cells during de novo infection with Kaposi's sarcoma-associated herpesvirus (KSHV), in cells expressing only latency-associated nuclear antigen 1 (LANA-1) protein, and in KSHV latently infected primary effusion lymphoma (PEL) BCBL-1 and BC-3 cells. Inhibition of phospholipase Cγ (PLCγ) mediated ANG's nuclear translocation by neomycin, an aminoglycoside antibiotic (not G418-neomicin), resulted in reduced KSHV latent gene expression, increased lytic gene expression, and increased cell death of KSHV(+) PEL and endothelial cells. ANG detection in significant levels in KS and PEL lesions highlights its importance in KSHV pathogenesis. To assess the in vivo antitumor activity of neomycin and neamine (a nontoxic derivative of neomycin), BCBL-1 cells were injected intraperitoneally into NOD/SCID mice. We observed significant extended survival of mice treated with neomycin or neamine. Markers of lymphoma establishment, such as increases in animal body weight, spleen size, tumor cell spleen infiltration, and ascites volume, were observed in nontreated animals and were significantly diminished by neomycin or neamine treatments. A significant decrease in LANA-1 expression, an increase in lytic gene expression, and an increase in cleaved caspase-3 were also observed in neomycin- or neamine-treated animal ascitic cells. These studies demonstrated that ANG played an essential role in KSHV latency maintenance and BCBL-1 cell survival in vivo, and targeting ANG function by neomycin/neamine to induce the apoptosis of cells latently infected with KSHV is an attractive therapeutic strategy against KSHV-associated malignancies.


Assuntos
Antineoplásicos/administração & dosagem , Framicetina/administração & dosagem , Herpesvirus Humano 8/fisiologia , Linfoma de Efusão Primária/tratamento farmacológico , Neomicina/administração & dosagem , Ribonuclease Pancreático/antagonistas & inibidores , Animais , Ascite/patologia , Peso Corporal , Linhagem Celular Tumoral , Modelos Animais de Doenças , Linfoma de Efusão Primária/patologia , Camundongos , Camundongos SCID , Baço/patologia , Análise de Sobrevida , Resultado do Tratamento
18.
J Virol ; 87(15): 8606-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720728

RESUMO

Epstein-Barr virus (EBV), etiologically linked with human B-cell malignancies and nasopharyngeal carcinoma (NPC), establishes three types of latency that facilitate its episomal genome persistence and evasion of host immune responses. The innate inflammasome responses recognize the pathogen-associated molecular patterns which lead into the association of a cytoplasmic sensor such as NLRP3 and AIM2 proteins or nuclear interferon-inducible protein 16 (IFI16) with adaptor ASC protein (apoptosis-associated speck-like protein with a caspase recruitment domain) and effector procaspase-1, resulting in active caspase-1 formation which cleaves the proforms of inflammatory interleukin-1ß (IL-1ß), IL-18, and IL-33 cytokines. Whether inflammasome responses recognize and respond to EBV genome in the nuclei was not known. We observed evidence of inflammasome activation, such as the activation of caspase-1 and cleavage of pro-IL-1ß, -IL-18, and -IL-33, in EBV latency I Raji cells, latency II NPC C666-1 cells, and latency III lymphoblastoid cell lines (LCL). Interaction between ASC with IFI16 but not with AIM2 or NLRP3 was detected in all three latencies and during EBV infection of primary human B cells. IFI16 and cleaved caspase-1, IL-1ß, IL-18, and IL-33 were detected in the exosomes from Raji cells and LCL. Though EBV nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) are common to all forms of EBV latency, caspase-1 cleavage was not detected in cells expressing EBNA1 alone, and blocking EBER transcription did not inhibit caspase-1 cleavage. In fluorescence in situ hybridization (FISH) analysis, IFI16 colocalized with the EBV genome in LCL and Raji cell nuclei. These studies demonstrated that constant sensing of latent EBV genome by IFI16 in all types of latency results in the constitutive induction of the inflammasome and IL-1ß, IL-18, and IL-33 maturation.


Assuntos
Linfócitos B/imunologia , Células Epiteliais/imunologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/fisiologia , Inflamassomos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Latência Viral , Linfócitos B/virologia , Células Cultivadas , Células Epiteliais/virologia , Humanos , Hidrólise , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33 , Interleucinas/metabolismo
19.
J Virol ; 87(8): 4417-31, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23388709

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) infections of endothelial and B cells are etiologically linked with Kaposi's sarcoma (KS) and primary effusion B-cell lymphoma (PEL), respectively. KS endothelial and PEL B cells carry multiple copies of the nuclear episomal latent KSHV genome and secrete a variety of inflammatory cytokines, including interleukin-1ß (IL-1ß) and IL-18. The maturation of IL-1ß and IL-18 depends upon active caspase-1, which is regulated by a multiprotein inflammasome complex induced by sensing of danger signals. During primary KSHV infection of endothelial cells, acting as a nuclear pattern recognition receptor, gamma interferon-inducible protein 16 (IFI16) colocalized with the KSHV genome in the nuclei and interacted with ASC and procaspase-1 to form a functional inflammasome (Kerur N et al., Cell Host Microbe 9:363-375, 2011). Here, we demonstrate that endothelial telomerase-immortalized human umbilical cells (TIVE) supporting KSHV stable latency (TIVE-LTC cells) and PEL (cavity-based B-cell lymphoma 1 [BCBL-1]) cells show evidence of inflammasome activation, such as the activation of caspase-1 and cleavage of pro-IL-1ß and pro-IL-18. Interaction of ASC with IFI16 but not with AIM2 or NOD-like receptor P3 (NLRP3) was detected. The KSHV latency-associated viral FLIP (vFLIP) gene induced the expression of IL-1ß, IL-18, and caspase-1 mRNAs in an NF-κB-dependent manner. IFI16 and cleaved IL-1ß were detected in the exosomes released from BCBL-1 cells. Exosomal release could be a KSHV-mediated strategy to subvert IL-1ß functions. In fluorescent in situ hybridization analyses, IFI16 colocalized with multiple copies of the KSHV genome in BCBL-1 cells. IFI16 colocalization with ASC was also detected in lung PEL sections from patients. Taken together, these findings demonstrated the constant sensing of the latent KSHV genome by IFI16-mediated innate defense and unraveled a potential mechanism of inflammation induction associated with KS and PEL lesions.


Assuntos
Linfócitos B/virologia , Células Endoteliais/virologia , Herpesvirus Humano 8/patogenicidade , Inflamassomos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Latência Viral , Western Blotting , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos
20.
J Antimicrob Chemother ; 68(5): 1071-80, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23292345

RESUMO

OBJECTIVES: To investigate the mode of action of monastrol in intracellular Leishmania. METHODS: Microarray experiments were conducted on an Affymetrix GeneChip(®) Human Genome U133 Plus 2.0 Array, to determine the genes that encode proteins related to pathological alterations of cell signalling pathways in intracellular Leishmania amastigotes in response to monastrol treatment. RESULTS: Monastrol induced unprenylated Rap1A in intracellular Leishmania when exposed to this anticancer drug at the IC50 (10 µM). Monastrol, known to cause mitotic arrest in cancer cells, inhibited Rap1A prenylation (geranylgeranylation) in intracellular Leishmania, which resulted in blockade at the G1 phase of the cell cycle. Growth inhibition, rather than apoptosis, was found to be the mechanism by which monastrol displays antileishmanial activity. CONCLUSIONS: Prenylation inhibitors (unprenylation) of cell signalling pathways can be exploited in Leishmania parasites as novel therapeutic tools.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Pirimidinas/farmacologia , Tionas/farmacologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Pontos de Checagem do Ciclo Celular , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries , Prenilação , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...