Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 11258-11269, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830055

RESUMO

This project addresses the urgent need for efficient and cost-effective development of electrocatalysts for the ethanol oxidation reaction (EOR). This reaction offers promising renewable energy solutions but faces challenges due to the slow EOR kinetics, typically requiring costly noble metal catalysts. To overcome these limitations, this study focuses on developing CuZn-based EOR catalysts derived from metal-organic frameworks (MOFs), focusing on understanding the structure-performance relationship between pristine MOF-based electrocatalysts and their pyrolyzed counterparts. Herein, bimetallic MOF materials with varying Cu/Zn ratios were synthesized, followed by pyrolysis to produce carbonized counterparts while preserving the fundamental structure but with altered physicochemical properties. Comparative EOR studies revealed the superior performance of pyrolyzed MOFs, demonstrating that optimized Zn-loading is crucial over Cu-based framework for catalyst performance and durability. Overall, this work highlights the potential of MOF-derived Cu-based catalysts for renewable energy applications and provides insights into optimizing their performance through controlled synthesis and post-treatment strategies.

2.
Dalton Trans ; 53(27): 11344-11353, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38899920

RESUMO

In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.

3.
Angew Chem Int Ed Engl ; : e202411197, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935406

RESUMO

The zeolite-catalyzed methanol-to-aromatics (MTA) process is a promising avenue for industrial decarbonization. This process predominantly utilizes 3-dimensional 10-member ring (10-MR) zeolites like ZSM-5 and ZSM-11, chosen for their confinement effect essential for aromatization. Current research mainly focuses on enhancing selectivity and mitigating catalyst deactivation by modulating zeolites' physicochemical properties. Despite the potential, the MTA technology is at a low Technology Readiness Level, hindered by mechanistic complexities in achieving the desired selectivity towards liquid aromatics. To bridge this knowledge gap, this study proposes a roadmap for MTA catalysis by strategically combining controlled catalytic experiments with advanced characterization methods (including operando conditions and "mobility-dependent" solid-state NMR spectroscopy). It identifies the descriptor-role of Koch-carbonylated intermediates, longer-chain hydrocarbons, and the zeolites' intersectional cavities in yielding preferential liquid aromatics selectivity. Understanding these selectivity descriptors and architectural impacts is vital, potentially advancing other zeolite-catalyzed emerging technologies.

4.
Dalton Trans ; 52(40): 14390-14399, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37781869

RESUMO

Introducing sustainability into advanced catalytic material design is essential to address growing environmental concerns. Among them, synthesizing inorganic zeolite materials from non-traditional sources (like natural clay) offers several advantages, contributing to sustainability and environmental stewardship. With this objective, we used kaolin to synthesize zeolites with different topologies: SSZ-13 (8-MR with CHA topology), ZSM-5 (10-MR with MFI topology), and Beta (12-MR with BEA topology) (MR: member ring), where a simple and flexible synthetic protocol was adopted without any significant changes. All these zeolites were subjected to catalytic performance evaluation concerning the industrially relevant methanol-to-hydrocarbon (MTH) process. Herein, the kaolin-derived zeolites, especially ZSM-5, led to superior performance and demonstrated enhanced catalyst deactivation-resistant behavior compared to their zeolite counterparts prepared from traditional synthetic routes. Various characterization tools (including under operando conditions) were employed to understand their reactions and deactivation mechanisms. Overall, making zeolites from non-traditional sources presents a pathway for sustainable and environmentally friendly material production, offering benefits such as reduced resource dependence, lower energy consumption, and tailored physicochemical properties beneficial to catalysis. In a broader context, such a research approach contributes to the transition toward a more sustainable and circular economy.

5.
Dalton Trans ; 52(43): 15958-15967, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37846524

RESUMO

Electrochemical carbon dioxide (CO2) reduction (eCO2R) over Cu-based bimetallic catalysts is a promising technique for converting CO2 into value-added multi-carbon products, such as fuels, chemicals, and materials. For improving the process efficiency, electrocatalyst development for the eCO2R must be integrated with tuning of operating conditions. For example, CuIn-based materials typically lead to preferential C1 product selectivity, which delivers the desired C2+ products upon varying the In/Cu ratio and operating conditions (i.e., in 0.1 M KHCO3 electrolytes using an H-type cell with a cation exchange membrane vs. in 1 M KOH electrolytes using a flow cell with an anion exchange membrane). At lower Cu-loading (i.e., InCu5Ox material), the maximum faradaic efficiency of HCOOH (FEHCOOH) of 70% was achieved at -1 V versus the reversible hydrogen electrode (vs. RHE) in an H-type cell. However, upon increasing the Cu loading, the preferential product selectivity could be altered: the InCu73Ox material led to a high CO selectivity (maximum FE of 51%) in the H-type cell at -0.8 V vs. RHE and delivered a current density of 100 mA cm-2 with a FEC2+ of up to 37% at -0.8 V vs. RHE in the flow cell configuration. Various characterization tools were also employed to probe the catalytic materials to rationalize the electrocatalytic performance.

6.
Inorg Chem ; 62(23): 8803-8811, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37249100

RESUMO

The suitable choice of an electrocatalyst is crucial in controlling the selectivity of electrocatalytic CO2 reduction products. Herein, we have explored the effect of different ligand environments in 2D metal-organic frameworks (MOFs), viz., copper naphthalenedicarboxylate (Cu-UNDC) and copper benzenedicarboxylate (Cu-UBDC). The change of ligand modulates the structure of the MOFs as well as the electronic environment around the copper center. The variation in the electronic structure and the coordination environment of the active Cu center changes the selectivity toward C2 products. In the electrocatalytic process, Cu-UNDC produced 24.3% Faradaic efficiency (FE) for the C2 products─far better than that of Cu-UBDC (13.2%). In contrast to electrocatalytic CO2RR, in the presence of light, Cu-UBDC (26.2%) achieved a better FE for the C2 products than Cu-UNDC (21.8%).

7.
Nat Mater ; 22(6): 669-670, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142738
8.
Dalton Trans ; 52(16): 5155-5168, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36961280

RESUMO

The increased awareness of carbon management has prompted the scientific community towards delivering sustainable catalytic technologies, preferably from CO2. Copper-based multifunctional catalysts are the most frequently used for thermal hydrogenation and electrocatalytic reduction of CO2 (CO2R) processes. To improve the understanding and efficacy of these materials for the CO2R reaction, Cu-Zn oxides combined with Al2O3 and ZrO2 were synthesized by the coprecipitation method and annealed at 500 °C, 600 °C, and 700 °C (i.e., Cu/ZnO/Al2O3-x and Cu/ZnO/ZrO2 systems-x, where x is the annealing temperature) to tune their multi-functionality. We demonstrate that the composition of Cu-Zn oxides and pretreatment temperature impact the electrocatalytic CO2R performance, where CuZnZr-600 and CuZnAl-700 materials are superior. Different characterization tools were employed to rationalize the results described in this work, which could provide a way to design an efficient catalytic system for the CO2R process.

9.
Chem Rev ; 122(18): 14275-14345, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35947790

RESUMO

Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.


Assuntos
Zeolitas , Carbono , Catálise
10.
Nat Commun ; 12(1): 5914, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625554

RESUMO

Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO2-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity.

11.
ACS Appl Mater Interfaces ; 11(47): 44133-44143, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31612697

RESUMO

Shaping and optimal compositional formulation are major challenges in the successful industrial application of heterogeneous catalysts. The choice of components during formulation plays a vital role in endowing the final catalyst's mechanical strength, durability, and lifetime and may even affect activity and selectivity. Herein, we evaluate the application of spray drying to manufacture spherical ZSM-5-based catalysts and their applicability in the methanol-to-olefins process. Several critical parameters of the spray drying process and various aspects related to catalyst formulation (binder, zeolite, and clay) are investigated. Chemical composition and structure of the clay matrix substantially influence the catalytic performance.

12.
Chem Sci ; 10(39): 8946-8954, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32190235

RESUMO

After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' (via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (i.e., via the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...