Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Rev Mol Med ; 26: e14, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623751

RESUMO

Neoadjuvant radiotherapy (RT) is commonly used as standard treatment for rectal cancer. However, response rates are variable and survival outcomes remain poor, highlighting the need to develop new therapeutic strategies. Research is focused on identifying novel methods for sensitising rectal tumours to RT to enhance responses and improve patient outcomes. This can be achieved through harnessing tumour promoting effects of radiation or preventing development of radio-resistance in cancer cells. Many of the approaches being investigated involve targeting the recently published new dimensions of cancer hallmarks. This review article will discuss key radiation and targeted therapy combination strategies being investigated in the rectal cancer setting, with a focus on exploitation of mechanisms which target the hallmarks of cancer.


Assuntos
Neoplasias Retais , Humanos , Neoplasias Retais/radioterapia , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Neoplasias Retais/tratamento farmacológico , Terapia de Alvo Molecular , Terapia Neoadjuvante/métodos , Terapia Combinada , Resultado do Tratamento , Animais
2.
Neuro Oncol ; 26(4): 625-639, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37936324

RESUMO

BACKGROUND: Glioblastomas have highly infiltrative growth patterns that contribute to recurrence and poor survival. Despite infiltration being a critical therapeutic target, no clinically useful therapies exist that counter glioblastoma invasion. Here, we report that inhibition of ataxia telangiectasia and Rad 3 related kinase (ATR) reduces invasion of glioblastoma cells through dysregulation of cytoskeletal networks and subsequent integrin trafficking. METHODS: Glioblastoma motility and invasion were assessed in vitro and in vivo in response to ATR inhibition (ATRi) and ATR overexpression using time-lapse microscopy, two orthotopic glioblastoma models, and intravital imaging. Disruption to cytoskeleton networks and endocytic processing were investigated via high-throughput, super-resolution and intravital imaging. RESULTS: High ATR expression was associated with significantly poorer survival in clinical datasets while histological, protein expression, and spatial transcriptomics using glioblastoma tumor specimens revealed higher ATR expression at infiltrative margins. Pharmacological inhibition with two different compounds and RNAi targeting of ATR opposed the invasion of glioblastoma, whereas overexpression of ATR drove migration. Subsequent investigation revealed that cytoskeletal dysregulation reduced macropinocytotic internalization of integrins at growth-cone-like structures, resulting in a tumor microtube retraction defect. The biological relevance and translational potential of these findings were confirmed using two orthotopic in vivo models of glioblastoma and intravital imaging. CONCLUSIONS: We demonstrate a novel role for ATR in determining invasion in glioblastoma cells and propose that pharmacological targeting of ATR could have far-reaching clinical benefits beyond radiosensitization.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Integrinas/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Invasividade Neoplásica , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Neurooncol Adv ; 5(1): vdad067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334166

RESUMO

Background: Infiltration of glioblastoma (GBM) throughout the brain leads to its inevitable recurrence following standard-of-care treatments, such as surgical resection, chemo-, and radiotherapy. A deeper understanding of the mechanisms invoked by GBM to infiltrate the brain is needed to develop approaches to contain the disease and reduce recurrence. The aim of this study was to discover mechanisms through which extracellular vesicles (EVs) released by GBM influence the brain microenvironment to facilitate infiltration, and to determine how altered extracellular matrix (ECM) deposition by glial cells might contribute to this. Methods: CRISPR was used to delete genes, previously established to drive carcinoma invasiveness and EV production, from patient-derived primary and GBM cell lines. We purified and characterized EVs released by these cells, assessed their capacity to foster pro-migratory microenvironments in mouse brain slices, and evaluated the contribution made by astrocyte-derived ECM to this. Finally, we determined how CRISPR-mediated deletion of genes, which we had found to control EV-mediated communication between GBM cells and astrocytes, influenced GBM infiltration when orthotopically injected into CD1-nude mice. Results: GBM cells expressing a p53 mutant (p53R273H) with established pro-invasive gain-of-function release EVs containing a sialomucin, podocalyxin (PODXL), which encourages astrocytes to deposit ECM with increased levels of hyaluronic acid (HA). This HA-rich ECM, in turn, promotes migration of GBM cells. Consistently, CRISPR-mediated deletion of PODXL opposes infiltration of GBM in vivo. Conclusions: This work describes several key components of an EV-mediated mechanism though which GBM cells educate astrocytes to support infiltration of the surrounding healthy brain tissue.

4.
JCI Insight ; 4(23)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31661466

RESUMO

Mitochondrial quality control (MQC) is crucial for regulating CNS homeostasis, and its disruption has been implicated in the pathogenesis of some of the most common neurodegenerative diseases. In healthy tissues, the maintenance of MQC depends upon an exquisite balance between mitophagy (removal of damaged mitochondria by autophagy) and biogenesis (de novo synthesis of mitochondria). Here, we show that mitophagy is disrupted in diabetic retinopathy (DR) and decoupled from mitochondrial biogenesis during the progression of the disease. Diabetic retinas from human postmortem donors and experimental mice exhibit a net loss of mitochondrial contents during the early stages of the disease process. Using diabetic mitophagy-reporter mice (mitoQC-Ins2Akita) alongside pMitoTimer (a molecular clock to address mitochondrial age dynamics), we demonstrate that mitochondrial loss arose due to an inability of mitochondrial biogenesis to compensate for diabetes-exacerbated mitophagy. However, as diabetes duration increases, Pink1-dependent mitophagy deteriorates, leading to the build-up of mitochondria primed for degradation in DR. Impairment of mitophagy during prolonged diabetes is linked with the development of retinal senescence, a phenotype that blunted hyperglycemia-induced mitophagy in mitoQC primary Müller cells. Our findings suggest that normalizing mitochondrial turnover may preserve MQC and provide therapeutic options for the management of DR-associated complications.


Assuntos
Retinopatia Diabética/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Animais , Linhagem Celular , Diabetes Mellitus , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Dinâmica Mitocondrial/fisiologia , Mitofagia/genética , Proteínas Quinases/metabolismo , Retina/metabolismo
5.
J Biol Chem ; 294(48): 18041-18045, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31604823

RESUMO

Canonical Gremlin1 (GREM1) signaling involves binding to and sequestering bone morphogenetic proteins (BMPs) in the extracellular matrix, preventing the activation of cognate BMP receptor. Exquisite temporospatial control of the GREM1-BMP interaction is required during development, and perturbation of this balance leads to abnormal limb formation and defective kidney development. In addition to inhibition of BMP signaling, several other noncanonical signaling modalities of GREM1 have been postulated. Some literature reports have suggested that GREM1 can bind to and activate vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells, human kidney epithelial cells, and others. These reports suggest that the GREM1 → VEGFR2 signaling can drive angiogenesis both in vitro and in vivo We report here that, despite exhaustive attempts, we did not observe GREM1 activation of VEGFR2 in any of the cell lines reported by the above-mentioned studies. Incubation of endothelial colony-forming cells (ECFCs) or human umbilical vein endothelial cells (HUVECs) with recombinant VEGF triggered a robust increase in VEGFR2 tyrosine phosphorylation. In contrast, no VEGFR2 phosphorylation was detected when cells were incubated with recombinant GREM1 over a range of time points and concentrations. We also show that GREM1 does not interfere with VEGF-mediated VEGFR2 activation, suggesting that GREM1 does not bind with any great affinity to VEGFR2. Measurements of ECFC barrier integrity revealed that VEGF induces barrier function disruption, but recombinant human GREM1 had no effect in this assay. We believe that these results provide an important clarification of the potential interaction between GREM1 and VEGFR2 in mammalian cells.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fosforilação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
6.
Oncotarget ; 10(45): 4630-4639, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31384391

RESUMO

Gremlin1 (GREM1) is a secreted glycoprotein member of the differential screening-selected gene in aberrant neuroblastoma (DAN) family of bone morphogenetic protein (BMP) antagonists, which binds to BMPs preventing their receptor engagement. Previous studies have identified that stage II colorectal cancer (CRC) patients with high levels of GREM1 gene expression in their tumour tissue have a poorer prognosis. Using a series of in silico and in situ methodologies, we demonstrate that GREM1 gene expression is significantly higher (p < 0.0001) in CRC consensus molecular subtype 4 (CMS4), compared to the other CMS subtypes and correlates (p < 0.0001) with levels of cancer-associated fibroblasts (CAFs) within the CRC tumour microenvironment (TME). Our optimised immunohistochemistry protocol identified endogenous GREM1 protein expression in both the muscularis mucosa and adjacent colonic crypt bases in mouse intestine, in contrast to RNA expression which was shown to localise specifically to the muscularis mucosa, as determined by in situ hybridisation. Importantly, we demonstrate that cells with high levels of GREM1 expression display low levels of phospho-Smad1/5, consistent with reduced BMP signalling. Taken together, these data highlight a novel paracrine signalling circuit, which involves uptake of mature GREM1 protein by colonic crypt cells following secretion from neighbouring fibroblasts in the TME.

7.
Exp Eye Res ; 182: 144-155, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30876881

RESUMO

PURPOSE: Retinal ischemia remains a common sight threatening end-point in blinding diseases such as diabetic retinopathy and retinopathy of prematurity. Endothelial colony forming cells (ECFCs) represent a subpopulation of endothelial progenitors with therapeutic utility for promoting reparative angiogenesis in the ischaemic retina. The current study has investigated the potential of enhancing this cell therapy approach by the dampening of the pro-inflammatory milieu typical of ischemic retina. Based on recent findings that ARA290 (cibinetide), a peptide based on the Helix-B domain of erythropoietin (EPO), is anti-inflammatory and tissue-protective, the effect of this peptide on ECFC-mediated vascular regeneration was studied in the ischemic retina. METHODS: The effects of ARA290 on pro-survival signaling and function were assessed in ECFC cultures in vitro. Efficacy of ECFC transplantation therapy to promote retinal vascular repair in the presence and absence of ARA290 was studied in the oxygen induced retinopathy (OIR) model of retinal ischemia. The inflammatory cytokine profile and microglial activation were studied as readouts of inflammation. RESULTS: ARA290 activated pro-survival signaling and enhanced cell viability in response to H2O2-mediated oxidative stress in ECFCs in vitro. Preconditioning of ECFCs with EPO or ARA290 prior to delivery to the ischemic retina did not enhance vasoreparative function. ARA290 delivered systemically to OIR mice reduced pro-inflammatory expression of IL-1ß and TNF-α in the mouse retina. Following intravitreal transplantation, ECFCs incorporated into the damaged retinal vasculature and significantly reduced avascular area. The vasoreparative function of ECFCs was enhanced in the presence of ARA290 but not EPO. DISCUSSION: Regulation of the pro-inflammatory milieu of the ischemic retina can be enhanced by ARA290 and may be a useful adjunct to ECFC-based cell therapy for ischemic retinopathies.


Assuntos
Endotélio Vascular/patologia , Isquemia/tratamento farmacológico , Oligopeptídeos/farmacologia , Doenças Retinianas/tratamento farmacológico , Vasos Retinianos/fisiopatologia , Vasodilatação/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Eritropoetina/metabolismo , Humanos , Recém-Nascido , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Transdução de Sinais
8.
Disabil Rehabil ; 34(14): 1208-17, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22149179

RESUMO

PURPOSE: The aim of this qualitative study was to explore the impact of multiple sclerosis (MS) on perceptions of self as well as the emotional, social and practical implications of any self-reported changes. METHOD: Twelve participants were interviewed and interpretative phenomenological analysis used to analyse the data. Participants were recruited from a MS hospital clinic in the north-west of England. RESULTS: Four themes were identified although for reasons of space and novelty three were discussed, (i) 'my body didn't belong to me': the changing relationship to body, (ii) 'I miss the way I feel about myself': the changing relationship to self and (iii) 'let's just try and live with it': incorporating yet separating MS from self. CONCLUSIONS: The onset of MS was seen to impact upon self yet impact did not necessarily equate with a loss of self but rather a changed self. Self-related changes did, however, carry the potential to impact negatively upon a person's mood and psychological functioning and consequently, clinicians are encouraged to consider issues relating to self as standard.


Assuntos
Adaptação Psicológica , Esclerose Múltipla/psicologia , Autoimagem , Adulto , Idoso , Atitude Frente a Saúde , Emoções , Inglaterra , Feminino , Humanos , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Pesquisa Qualitativa , Qualidade de Vida , Índice de Gravidade de Doença , Perfil de Impacto da Doença , Apoio Social , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...