Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 23(31): 7418-7421, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28378889

RESUMO

The formation of peptides upon 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)-promoted activation of N-carbamoylamino acids (CAA), was considered in the scope of our recent works on carbodiimide promoted C-terminus elongation of peptides in a prebiotic context. Thus EDC promoted activation of CAA derivatives of Tyr(Me) or Ala in dilute aqueous medium pH 5.5-6.5 in the presence of excess of AA, resulted in peptide formation by C-terminus activation/elongation. Kinetic results similar to those of EDC-mediated activation of N-acyl-AA lead us to postulate the formation of a 2-amino-5(4H)-oxazolone intermediate by cyclization of the activated CAA, in spite of the absence of epimerization occurred at CAA residues. Thus, in a prebiotic context, CAA may have played a similar role as N-acyl-AA in the initiation of C-terminus peptide elongation.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Biossíntese Peptídica/fisiologia , Peptídeos/metabolismo , Prebióticos , Peptídeos/química
2.
Phys Chem Chem Phys ; 19(4): 2857-2866, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28071777

RESUMO

Many complex organic molecules (hereafter COMs) have been detected in different regions of the interstellar medium (ISM). In each region, different energetic processes - UV irradiation, atom bombardments, etc. - that could be linked to the formation of detected COMs may occur depending on the environment. Several formation mechanisms were proposed but increasing attention is paid to radical recombination reactions. Previous studies showed that glycolaldehyde (HC(O)CH2OH) and ethylene glycol (HOCH2CH2OH) are formed by radical recombination between HC˙O and ˙CH2OH, and by ˙CH2OH dimerisation, respectively. Formyl (HC˙O), one of the most famous astrophysically-relevant radical species, has been detected as a gaseous component of the ISM. Its reactivity was already attributed to the formation of several COMs. This work aims to study the dimerisation of formyl radical HC˙O using a cryogenic matrix technique. The evolution of the chemical sample composition is monitored by infrared spectroscopy and by mass spectrometry during temperature programmed desorption (TPD) monitoring. Results indicate that the reaction of one HC˙O with another does not lead to the direct formation of glyoxal (HC(O)C(O)H) but yields H2CO and CO. Results are also compared with those for the reaction between two ˙CH2OH radicals and the recombination between HC˙O and ˙CH2OH. Also, glyceraldehyde was tentatively detected in our experiment using different spectroscopic techniques. A radical mechanism is proposed to explain its formation in our experiments. Complementary quantum chemical calculations provide an atomistic interpretation of the experimental findings.

4.
Anal Chem ; 86(16): 8391-9, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25025518

RESUMO

This contribution presents an original analytical system for studying volatile organic compounds (VOC) coming from the heating and/or irradiation of interstellar/cometary ice analogues (VAHIIA system) through laboratory experiments. The VAHIIA system brings solutions to three analytical constraints regarding chromatography analysis: the low desorption kinetics of VOC (many hours) in the vacuum chamber during laboratory experiments, the low pressure under which they sublime (10(-9) mbar), and the presence of water in ice analogues. The VAHIIA system which we developed, calibrated, and optimized is composed of two units. The first is a preconcentration unit providing the VOC recovery. This unit is based on a cryogenic trapping which allows VOC preconcentration and provides an adequate pressure allowing their subsequent transfer to an injection unit. The latter is a gaseous injection unit allowing the direct injection into the GC-MS of the VOC previously transferred from the preconcentration unit. The feasibility of the online transfer through this interface is demonstrated. Nanomoles of VOC can be detected with the VAHIIA system, and the variability in replicate measurements is lower than 13%. The advantages of the GC-MS in comparison to infrared spectroscopy are pointed out, the GC-MS allowing an unambiguous identification of compounds coming from complex mixtures. Beyond the application to astrophysical subjects, these analytical developments can be used for all systems requiring vacuum/cryogenic environments.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Gelo , Meteoroides , Compostos Orgânicos Voláteis/análise , Desenho de Equipamento , Calefação , Gelo/análise
5.
Phys Chem Chem Phys ; 16(8): 3360-70, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24202268

RESUMO

Studying chemical reactivity is an important way to improve our understanding of the origin of organic matter in astrophysical environments such as molecular clouds, protoplanetary disks, and possibly, as a final destination, in our solar system bodies such as in comets. Laboratory simulations on the reactivity of ice analogs can provide important insights into this complex reactivity. Here, the role of water as a catalytic agent is investigated under the conditions of simulated interstellar and cometary grains in the formation of complex organic molecules: the hydroxyacetonitrile (HOCH2CN) and formaldehyde polymers (polyoxymethylene POM). Using infrared spectroscopy and mass spectrometry, we show that HCN reacts with CH2O only in the presence of H2O, whereas in the absence of H2O, HCN is not sufficiently reactive to promote this reaction. Furthermore, depending on the dilution of CH2O and HCN in the water matrix, 1-cyanopolyoxymethylene polymers can also be formed (H-(O-CH2)n-CN, POM-CN), as confirmed by mass spectrometry using the HC(15)N isotopologue. Moreover, quantum chemical calculations allowed us to suggest mechanistic proposals for these reactions, the first step being the activation of HCN by water forming H3O(+) and CN(-), which subsequently condense on a neighbouring CH2O promoting the formation of (-)OCH2CN. Once (-)OCH2CN is formed, it can either recover a proton by reacting with H3O(+) or condense on CH2O molecules leading to POM-CN structures. Implications of this work for the forthcoming Rosetta mission are also addressed.

6.
Phys Chem Chem Phys ; 14(35): 12309-20, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22850541

RESUMO

There is convincing evidence that the formation of complex organic molecules occurred in a variety of environments. One possible scenario highlights the universe as a giant reactor for the synthesis of organic complex molecules, which is confirmed by numerous identifications of interstellar molecules. Among them, precursors of biomolecules are of particular significance due to their exobiological implications, and some current targets concern their search in the interstellar medium as well as understanding the mechanisms of their formation. Hexamethylenetetramine (HMT, C(6)H(12)N(4)) is one of these complex organic molecules and is of prime interest since its acid hydrolysis seems to form amino acids. In the present work, the mechanism for HMT formation at low temperature and pressure (i.e. resembling interstellar conditions) has been determined by combining experimental techniques and DFT calculations. Fourier transform infra-red spectroscopy and mass spectrometry techniques have been used to follow experimentally the formation of HMT as well as its precursors from thermal reaction of NH(3):H(2)CO:HCOOH and CH(2)NH:HCOOH ice mixtures, from 20 K to 330 K. DFT calculations have been used to compute the mechanistic steps through which HMT can be formed starting from the experimental reactants observed in solid phase. The fruitful interplay between theory and experiment has allowed establishing that the mechanism in the solid state at low temperature is different from the one proposed in liquid phase, in which a new intermediate (1,3,5-triazinane, C(3)H(9)N(3)) has been identified. In the meantime, aminomethanol has been unambiguously confirmed as the first intermediate whereas the hypothesis of methylenimine as the second is further strengthened.

7.
J Phys Chem A ; 112(23): 5113-20, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18491873

RESUMO

We study low temperature reactivity of methylamine (CH3NH2) and carbon dioxide (CO2) mixed within different ratios, using FTIR spectroscopy and mass spectrometry. We report experimental evidence that the methylammonium methylcarbamate [CH3NH3(+)][C3NHCO2(-)] and methylcarbamic acid (CH3NHCOOH) are formed when the initial mixture CH3NH2:CO2 is warmed up to temperatures above 40 K. An excess of CH3NH2 favors the carbamate formation while an excess of CO2 leads to a mixture of both methylammonium methylcarbamate and methylcarbamic acid. Quantum calculations show that methylcarbamic acid molecules are associated into centrosymmetric dimers. Above 230 K, the carbamate breaks down into CH3NH2 and CH3NHCOOH, then this latter dissociates into CH3NH2 and CO2. After 260 K, it remains on the substrate a solid residue made of a well-organized structure coming from the association between the remaining methylcarbamic acid dimers. This study shows that amines can react at low temperature in interstellar ices rich in carbon dioxide which are a privileged place of complex molecules formation, before being later released into "hot core" regions.

8.
Phys Chem Chem Phys ; 9(9): 1099-106, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17311153

RESUMO

Vacuum ultraviolet (VUV) irradiation of acetamide has been monitored by Fourier transform infrared spectroscopy in argon matrix at 10 K. Several primary photoproducts, including HNCO ratio CH(4) and CO ratio CH(3)NH(2) molecular complexes, and acetimidic acid, which is reported for the first time, were characterized. The acetimidic acid identification was based on comparison between the experimental and theoretical (B3LYP) infrared spectra. Acetimidic acid is found in argon matrix in the (s-Z)-(E) and (s-Z)-(Z) configurations. It is also an intermediate in the VUV decomposition process, its dehydration leads to the formation of CH(3)CN ratio H(2)O molecular complex. The assignment of the complex was achieved by co-depositing the pairs of respective species and by ab initio calculation.


Assuntos
Acetamidas/química , Argônio/química , Acetamidas/síntese química , Acetamidas/efeitos da radiação , Temperatura Baixa , Estrutura Molecular , Fotoquímica , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Propriedades de Superfície , Raios Ultravioleta
9.
J Phys Chem A ; 109(49): 11155-62, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16331898

RESUMO

The UV isomerization of formamide (HCONH2) trapped in xenon, nitrogen, argon, and neon cryogenic matrices has been monitored by Fourier transform infrared (FT-IR) spectroscopy. Formamide monomer is the only species present in the matrices after deposition; when UV-selective irradiation was carried out at 240 nm, the n --> pi transition allowed us to observe the formation of several isomers of formimidic acid [H(OH)C=NH]. On these latter species, we carried out selective IR irradiation of their OH stretching mode and compared the experimental and theoretical (B3LYP/6-311+G(2d,2p)) sets of bands. This study allowed us to characterize for the first time all the isomers of formimidic acid. We have then studied the vacuum UV photodecomposition (lambda > 160 nm) of this molecule at 10 K in argon and xenon matrices. Several primary photoproducts such as HCN.H2O, HNC.H2O, and HNCO.H2 complexes, yielded by dehydration and dehydrogenation processes, were characterized.

10.
J Phys Chem A ; 109(4): 603-8, 2005 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16833385

RESUMO

Cyanamide (NH(2)CN), an interstellar molecule, is a relevant molecule in prebiotic chemistry, because it can be converted into urea in liquid water. Carbodiimide (HNCNH), the most stable cyanamide isomer, is able to assemble amino acids into peptides. In this work, using FTIR spectroscopy, we show that carbodiimide can be formed from cyanamide at low temperature (10 K), by a photochemical process in argon matrix, in water matrix, or in solid film. We also report experimental evidence about the carbodiimide formation when cyanamide is condensed at low temperature (50-140 K) on an amorphous water ice surface, or when it is trapped in the water ice. The water ice acts as a catalyst. This isomerization reaction occurs at low temperature (T < 100 K), which agrees with those expected in the interstellar clouds composed of dust grains in which water is the most predominant compound. Finally, the hydrolysis reaction of cyanamide or carbodiimide leading to urea or isourea formation is not observed under our experimental conditions.

11.
J Phys Chem A ; 109(27): 6008-18, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16833937

RESUMO

Vacuum ultraviolet (VUV) irradiation at wavelengths of lambda > 160 nm of urea-h4 (NH2CONH2) and urea-d4 (ND2COND2) has been monitored by Fourier transform infrared spectroscopy in argon and xenon matrixes. Several primary photoproducts, such as HNCO:NH3 (isocyanic acid:ammonia), CO:N2H4 (carbon monoxide:hydrazine) molecular complexes, and isourea (H2N(OH)C=NH), which is reported for the first time, were characterized. The assignment of complexes was achieved by co-depositing the pairs of respective species, whereas the isourea identification was based on the comparison between the experimental and theoretical (B3LYP) infrared spectra. Isourea is found in the argon matrix in its most stable (s-Z)-(E) configuration. It is an intermediate in the VUV decomposition process; its dehydration leads to the NH2CN:H2O complex. In the xenon matrix, the photochemistry of urea yields the HNCO:NH3 complex as a major product, whereas the CO:N2H4 complex is observed in trace amounts. The observed differences between the argon and xenon matrixes suggest the crossing between S1 and T1 potential surfaces of urea to be responsible for the formation of the HNCO:NH3 complex. A comparison is also performed with other carboxamides, such as formamide (HCONH2) or acetamide (CH3CONH2).


Assuntos
Argônio/química , Fotoquímica , Raios Ultravioleta , Ureia/química , Xenônio/química , Acetamidas/química , Formamidas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
12.
J Am Chem Soc ; 126(25): 7772-3, 2004 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15212513

RESUMO

Cyanamide (NH2CN) is a molecule of interstellar interest which can be implied in prebiotic chemistry. We showed, by FTIR spectroscopy, that cyanamide can be isomerized in carbodiimide (HNCNH), another interstellar relevant molecule, by a reaction involving the amorphous water-ice surface as catalyst. This isomerization occurs at low temperature (T < 100 K) which agrees quite well with that expected in the interstellar clouds composed of dust grains in which water is the most predominant constituent.


Assuntos
Carbodi-Imidas/química , Cianamida/química , Gelo , Água/química , Catálise , Química Orgânica , Temperatura Alta , Isomerismo , Fenômenos de Química Orgânica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...