Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(3): e0006959, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30849083

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) is a lethal zoonosis caused by the metacestode larva of the tapeworm Echinococcus multilocularis. The infection is characterized by tumour-like growth of the metacestode within the host liver, leading to extensive fibrosis and organ-failure. The molecular mechanisms of parasite organ tropism towards the liver and influences of liver cytokines and hormones on parasite development are little studied to date. METHODOLOGY/PRINCIPAL FINDINGS: We show that the E. multilocularis larval stage expresses three members of the fibroblast growth factor (FGF) receptor family with homology to human FGF receptors. Using the Xenopus expression system we demonstrate that all three Echinococcus FGF receptors are activated in response to human acidic and basic FGF, which are present in the liver. In all three cases, activation could be prevented by addition of the tyrosine kinase (TK) inhibitor BIBF 1120, which is used to treat human cancer. At physiological concentrations, acidic and basic FGF significantly stimulated the formation of metacestode vesicles from parasite stem cells in vitro and supported metacestode growth. Furthermore, the parasite's mitogen activated protein kinase signalling system was stimulated upon addition of human FGF. The survival of metacestode vesicles and parasite stem cells were drastically affected in vitro in the presence of BIBF 1120. CONCLUSIONS/SIGNIFICANCE: Our data indicate that mammalian FGF, which is present in the liver and upregulated during fibrosis, supports the establishment of the Echinococcus metacestode during AE by acting on an evolutionarily conserved parasite FGF signalling system. These data are valuable for understanding molecular mechanisms of organ tropism and host-parasite interaction in AE. Furthermore, our data indicate that the parasite's FGF signalling systems are promising targets for the development of novel drugs against AE.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Linhagem Celular , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Indóis/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cultura Primária de Células , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas Recombinantes/farmacologia
2.
Transgenic Res ; 21(3): 511-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21953124

RESUMO

Blood flukes or schistosomes are the causative agents of human schistosomiasis, one of the major neglected tropical diseases. Draft genome sequences have been reported for schistosomes, but functional genomics tools are needed to investigate the role and essentiality of the newly reported genes. Vector based RNA interference can contribute to functional genomics analysis for schistosomes. Using mRNA encoding reporter firefly luciferase as a model target, we compared the performance of a schistosome and a human promoter from the U6 gene in driving shRNA in human fibrosarcoma cells and in cultured schistosomes. Further, both a retroviral [Murine leukemia virus (MLV)] and plasmid (piggyBac, pXL-Bac II) vector were utilized. The schistosome U6 gene promoter was 270 bp in length, the human U6 gene promoter was 264 bp; they shared 41% identity. Following transduction of both HT1080 fibrosarcoma cells and schistosomules of Schistosoma mansoni with pseudotyped MLV virions, stronger knockdown of luciferase activity was seen with the virions encoding the human U6 promoter driven shRNA than the schistosome U6 promoter. A similar trend was seen after transfection of HT1080 cells and schistosomules with the pXL-Bac-II constructs-stronger knockdown of luciferase activity was seen with constructs encoding the human compared to schistosome U6 promoter. The findings indicate that a human U6 gene promoter drives stronger shRNA activity than its schistosome orthologue, not only in a human cancer cell line but also in larval schistosomes. This RNA polymerase III promoter represents a potentially valuable component for vector based RNA interference studies in schistosomes and related platyhelminth parasites.


Assuntos
Fibrossarcoma/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Schistosoma mansoni/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Fibrossarcoma/genética , Genes de Helmintos , Genes Reporter , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Schistosoma mansoni/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...