Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(26): 29025-29034, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973899

RESUMO

Efficient carbon capture requires engineered porous systems that selectively capture CO2 and have low energy regeneration pathways. Porous liquids (PLs), solvent-based systems containing permanent porosity through the incorporation of a porous host, increase the CO2 adsorption capacity. A proposed mechanism of PL regeneration is the application of isostatic pressure in which the dissolved nanoporous host is compressed to alter the stability of gases in the internal pore. This regeneration mechanism relies on the flexibility of the porous host, which can be evaluated through molecular simulations. Here, the flexibility of porous organic cages (POCs) as representative porous hosts was evaluated, during which pore windows decreased by 10-40% at 6 GPa. POCs with sterically smaller functional groups, such as the 1,2-ethane in the CC1 POC resulted in greater imine cage flexibility relative to those with sterically larger functional groups, such as the cyclohexane in the CC3 POC that protected the imine cage from the application of pressure. Structural changes in the POC also caused CO2 adsorption to be thermodynamically unfavorable beginning at ∼2.2 GPa in the CC1 POC, ∼1.1 GPa in the CC3 POC, and ∼1.0 GPa in the CC13 POC, indicating that the CO2 would be expelled from the POC at or above these pressures. Energy barriers for CO2 desorption from inside the POC varied based on the geometry of the pore window and all the POCs had at least one pore window with a sufficiently low energy barrier to allow for CO2 desorption under ambient temperatures. The results identified that flexibility of the CC1, CC3, or CC13 POCs under compression can result in the expulsion of captured gas molecules.

2.
Sci Rep ; 12(1): 16777, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202947

RESUMO

Lattice and electronic structure interactions for f-electrons are fundamental challenges for lanthanide equation of state development. Difficulties in first-principles calculations, such as density functional theory (DFT), emphasize the need for well-characterized experimental data. Here, we measure in-situ x-ray diffraction of shocked samarium (Sm) and temperature along the Hugoniot for the first time, providing direct evidence for phase transitions. We report direct evidence of a distorted fcc (dfcc) phase at 23 GPa. Shocked samarium melts from the dfcc phase starting at 33 GPa (1333 K), with complete melt at 40 GPa (1468 K). Previous work indicated shock melt at 27 GPa (1200 K), underscoring the significance of x-ray measurements for detecting phase transitions. Interestingly, our observed melting is in sharp contrast with the melting reported by a diamond anvil cell study. These experimental data can tightly constrain first principles calculations and serve as key touchstones for equation of state modeling.

3.
J Am Chem Soc ; 143(7): 2688-2693, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577287

RESUMO

We report here pressure induced nanocrystal coalescence of ordered lead chalcogenide nanocrystal arrays into one-dimensional (1D) and 2D nanostructures. In particular, atomic crystal phase transitions and mesoscale coalescence of PbS and PbSe nanocrystals have been observed and monitored in situ respectively by wide- and small-angle synchrotron X-ray scattering techniques. At the atomic scale, both nanocrystals underwent reversible structural transformations from cubic to orthorhombic at significantly higher pressures than those for the corresponding bulk materials. At the mesoscale, PbS nanocrystal arrays displayed a superlattice transformation from face-centered cubic to lamellar structures, while no clear mesoscale lattice transformation was observed for PbSe nanocrystal arrays. Intriguingly, transmission electron microscopy showed that the applied pressure forced both spherical nanocrystals to coalesce into single crystalline 2D nanosheets and 1D nanorods. Our results confirm that pressure can be used as a straightforward approach to manipulate the interparticle spacing and engineer nanostructures with specific morphologies and, therefore, provide insights into the design and functioning of new semiconductor nanocrystal structures under high-pressure conditions.

4.
J Chem Phys ; 148(13): 134310, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626901

RESUMO

Hydrazinium azide (HA) has been investigated at high pressures to 68 GPa using confocal micro-Raman spectroscopy and synchrotron powder x-ray diffraction. The results show that HA undergoes structural phase transitions from solid HA-I to HA-II at 13 GPa, associated with the strengthening of hydrogen bonding, and then to N8 at 40 GPa. The transformation of HA to recently predicted N8 (N≡N+-N--N=N--N-+N≡N) is evident by the emergence of new peaks at 2384 cm-1, 1665 cm-1, and 1165 cm-1, arising from the terminal N≡N stretching, the central N=N stretching, and the N-N stretching, respectively. However, upon decompression, N8 decomposes to ε-N2 below 25 GPa, but the remnant can be seen as low as 3 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...