Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0133811, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207754

RESUMO

Skeletal muscle development has been the focus of intensive study for many decades. Recent advances in genetic manipulation of the mouse have increased our understanding of the cell signalling involved in the development of muscle progenitors which give rise to adult skeletal muscles and their stem cell populations. However, the influence of a vital tissue type - the peripheral nerve-has largely been ignored since its earliest descriptions. Here we carefully describe the timing in which myogenic progenitors expressing Pax3 and Pax7 (the earliest markers of myogenic cells) enter the limb buds of rat and mouse embryos, as well as the spatiotemporal relationship between these progenitors and the ingrowing peripheral nerve. We show that progenitors expressing Pax3 enter the limb bud one full day ahead of the first neurites and that Pax7-expressing progenitors (associated with secondary myogenesis in the limb) are first seen in the limb bud at the time of nerve entry and in close proximity to the nerve. The initial entry of the nerve also coincides with the first expression of myosin heavy chain showing that the first contact between nerves and myogenic cells correlates with the onset of myogenic differentiation. Furthermore, as the nerve grows into the limb, Pax3 expression is progressively replaced by Pax7 expression in myogenic progenitors. These findings indicate that the ingrowing nerve enters the limb presumptive muscle masses earlier than what was generally described and raises the possibility that nerve may influence the differentiation of muscle progenitors in rodent limbs.


Assuntos
Botões de Extremidades/embriologia , Botões de Extremidades/inervação , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Músculo Esquelético/inervação , Junção Neuromuscular/embriologia , Animais , Diferenciação Celular/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Gravidez , Ratos , Ratos Wistar
2.
Dev Dyn ; 242(9): 1043-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23765941

RESUMO

BACKGROUND: Vertebrate muscles are defined and patterned at the stage of primary myotube formation, but there is no clear description of how these cells form in vivo. Of particular interest is whether primary myotubes are "seeded" by a unique myoblast population that differentiates as mononucleated myocytes, similar to the founder myoblasts of insects. RESULTS: We analyzed the cell populations and processes leading to initiation of primary myogenesis in limb buds of rats and mice. Pax3(+ve) myogenic precursors migrate into the limb bud and initially consolidate into dorsal and ventral muscle masses in the absence of Pax7 expression. Approximately a day later, Pax7(+ve) cells appear in the central aspect of the limb base and subsequently throughout the limb muscle masses. Primary myogenesis is initiated within each muscle mass at a time when only Pax3, and not Pax7, protein can be detected. Primary myotubes form initially as elongate mononucleated myocytes, well before cleavage of the muscle masses has occurred. Multinucleate myotubes appear approximately a day later. A similar process is seen during initiation of chick limb primary myogenesis. CONCLUSIONS: Primary myotubes of vertebrate limb muscles are initiated by mononucleated myocytes, that appear structurally analogous to the founder myoblasts of insects.


Assuntos
Membro Posterior/embriologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Fator de Transcrição PAX3 , Fator de Transcrição PAX7/biossíntese , Fatores de Transcrição Box Pareados/biossíntese , Ratos
3.
Spine (Phila Pa 1976) ; 36(16): E1053-61, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21242870

RESUMO

STUDY DESIGN. A qualitative and semiquantitative study of the morphology of the human thoracolumbar transversospinal (TSP) muscles. OBJECTIVE. To further define the functional morphology of the thoracolumbar TSP muscles. SUMMARY OF BACKGROUND DATA. The TSP muscle group plays an important role in vertebral function but few studies have rigorously investigated their morphology throughout the thoracolumbar region and details on the location of motor endplates (MEPs) and fiber types are sparse. METHODS. Thoracolumbar TSP muscles were examined by microdissection in five cadavers (seven sides). MEPs were identified using acetylcholinesterase histochemistry in muscles between T5 and S4 unilaterally in two cadavers. The relative proportions of type I and type II skeletal muscle fibers were determined using immunohistochemistry on whole cross sections of every TSP muscle from one side of one cadaver (T5-S4). RESULTS.TSP morphology was homogeneous and consistent throughout the thoracolumbar region. Notable differences to standard descriptions included: (1) consistent attachments between muscles; (2) no discrete cleavage planes between muscles; and (3) attachment sites over the sacrum and to lumbar zygapophysial joints. Previously undescribed small muscles were found attaching to the medial sacrum. All TSP muscles were multipennate, with fibers arranged in parallel having one MEP per muscle fiber. Muscles were highly aerobic (mean proportion of type I fibers 89%), with the proportion of type I fibers decreasing caudally. A significantly greater proportion of type I fibers were found in the midthoracic compared to the low lumbar regions. CONCLUSION. The complex morphology of the TSP muscles indicates that they would be better classified as spinotransverse muscles. They are multipennate, highly aerobic, with fibers organized in parallel, an arrangement lending itself to "fine-tuning" of vertebral movements. Understanding their morphology has implications for investigation, treatment, motor control, and biomechanics.


Assuntos
Vértebras Lombares/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Vértebras Torácicas/anatomia & histologia , Acetilcolinesterase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Cadáver , Feminino , Histocitoquímica , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Placa Motora/anatomia & histologia , Placa Motora/metabolismo , Placa Motora/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/metabolismo
4.
Anat Rec (Hoboken) ; 293(12): 2107-13, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21082741

RESUMO

Although the morphology of human lumbar transversospinal (TSP) muscles has been studied, little is known about the structure of these muscles in the mouse (Mus musculus). Such information is relevant given mice are often used as a "normal" phenotype for studies modeling human development. This study describes the gross morphology, muscle fiber arrangement, and innervation pattern of the mouse lumbar TSP muscles. A unique feature of the study is the use of a transgenic mouse line bearing a muscle-specific nuclear marker that allows clear delineation of muscle fiber and connective tissue boundaries. The lumbar TSP muscles of five mice were examined bilaterally; at each spinal level muscles attached to the caudal edge of the spinous process and passed caudally as a single complex unit. Fibers progressively terminated over the four vertebral segments caudad, with multiple points of muscle fiber attachment on each vertebra. Motor endplates, defined with acetylcholinesterase histochemistry, were consistently located half way along each muscle fiber, regardless of length, with all muscle fibers arranged in-parallel rather than in-series. These results provide information relevant to interpretation of developmental and functional studies involving this muscle group in the mouse and show mouse lumbar TSP muscles are different in form to descriptions of equivalent muscles in humans and horses.


Assuntos
Vértebras Lombares/anatomia & histologia , Região Lombossacral/anatomia & histologia , Camundongos/anatomia & histologia , Fibras Musculares Esqueléticas/citologia , Animais , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Imuno-Histoquímica , Região Lombossacral/inervação , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Cadeias Leves de Miosina/metabolismo , Coloração e Rotulagem/métodos
5.
Dev Dyn ; 239(11): 2898-910, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20865781

RESUMO

The myotome is a segmented paraxial muscle present in all early vertebrate embryos, which in amniotes disappears in mid-embryogenesis, and is replaced by complex epaxial and hypaxial musculature. Little is known about how this transition occurs. Here, we describe the detailed morphogenesis of the epaxial muscles from the epaxial myotome, in rodent embryos. The results show there is no apoptosis of myotomal fibres during the transition, and that the epaxial muscles arise by translocation, re-orientation, and elongation of the myotomal myocytes followed by cleavage of the myotomal masses. Myotomal myocytes transit from a mononucleated to a multinucleated state just before onset of this transformation. Each newly-formed epaxial muscle anlagen includes populations of Pax3- and Pax7-positive muscle progenitors, with different distributions. Using transgenic mouse embryos bearing a GFP marker for Scleraxis, we show that tendon progenitors are tightly associated with the sides and ends of myotomal myocytes as they re-orient and elongate.


Assuntos
Embrião de Mamíferos/metabolismo , Morfogênese/fisiologia , Desenvolvimento Muscular/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Mamíferos/citologia , Feminino , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Morfogênese/genética , Células Musculares/citologia , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Gravidez , Ratos , Ratos Wistar
6.
Eur J Neurosci ; 31(1): 29-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20092553

RESUMO

Neurotrophin-3 (NT-3) is a trophic factor that is essential for the normal development and maintenance of proprioceptive sensory neurons and is widely implicated as an important modulator of synaptic function and development. We have previously found that animals lacking NT-3 have a number of structural abnormalities in peripheral nerves and skeletal muscles. Here we investigated whether haploinsufficiency-induced reduction in NT-3 resulted in impaired neuromuscular performance and synaptic function. Motor nerve terminal function was tested by monitoring the uptake/release of the fluorescent membrane dye FM1-43 by the electrophysiological examination of synaptic transmission and electron microscopic determination of synaptic vesicle density at the presynaptic active zone. We investigated skeletal muscle form and function by measuring force in response to both nerve-mediated and direct muscle stimulation and by quantification of fiber number and area from transverse sections. Synaptic transmission was not markedly different between the two groups, although the uptake and release of FM1-43 were impaired in mature NT-3-deficient mice but not in immature mice. The electron microscopic examination of mature nerve terminals showed no genotype-dependent variation in the number of synaptic vesicles near the active zone. NT-3(+/-) mice had normal soleus muscle fiber numbers but their fibers had smaller cross-sectional areas and were more densely-packed than wild-type littermates. Moreover, the muscles of adult NT-3-deficient animals were weaker than those of wild-type animals to both nerve and direct muscle stimulation. The results indicate that a reduction in NT-3 availability during development impairs motor nerve terminal maturation and synaptic vesicle recycling and leads to a reduction in muscle fiber diameter.


Assuntos
Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Neurotrofina 3/metabolismo , Animais , Animais Recém-Nascidos , Genótipo , Haplótipos , Heterozigoto , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Neurotrofina 3/deficiência , Neurotrofina 3/genética , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Compostos de Piridínio , Compostos de Amônio Quaternário , Sinapses/fisiologia , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
7.
Evol Dev ; 10(6): 746-55, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19021746

RESUMO

The segmented muscular myotome is the first muscle to form in all vertebrates. In fish and amphibian embryos, the myotome becomes innervated very early and is essential for larval swimming. Its role in birds and mammals, however, is not clear. Using immunohistochemistry on sections and whole mounts of rat embryos, we demonstrate that the mammalian myotome differentiates and develops over a period of 3 days without being invaded by the outgrowing spinal nerves. In contrast, the limb muscle masses become filled with fine nerve branches from the first time that myocyte differentiation can be detected. Additionally, we show that the mammalian myotome does not express clustered acetylcholine receptors until after embryonic day 13.5, which corresponds to the beginning of its transformation into the adult epaxial muscles, showing that there are no functional myotomal neuromuscular junctions before this age. We suggest that the mammalian myotome has entirely lost the function of neurally controlled muscular contraction: its remaining functions are likely to be as a signaling tissue, as a structural scaffold, and as an incubator for myogenic precursors of the deep back, abdominal, and intercostal muscles.


Assuntos
Desenvolvimento Muscular , Músculos/embriologia , Músculos/inervação , Ratos/embriologia , Animais , Embrião de Mamíferos/inervação , Embrião de Mamíferos/metabolismo , Extremidades/embriologia , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Junção Neuromuscular/embriologia
8.
Glia ; 56(3): 306-17, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18080292

RESUMO

This work investigates the role of NT-3 in peripheral myelination. Recent articles, based in vitro, propose that NT-3 acting through its high-affinity receptor TrkC may act to inhibit myelin formation by enhancing Schwann cell motility and/or migration. Here, we investigate this hypothesis in vivo by examining myelination formation in NT-3 mutant mice. On the day of birth, soon after the onset of myelination, axons showed normal ensheathment by Schwann cells, no change in the proportion of axons which had begun to myelinate, and no change in either myelin thickness or number of myelin lamellae. However in postnatal day 21 mice, when myelination is substantially complete, we observed an unexpected reduction in mRNA and protein levels for MAG and P(0), and in myelin thickness. This is the opposite result to that predicted from previous in vitro studies, where removal of an inhibitory NT-3 signal would have been expected to enhance myelination. These results suggest that, in vivo, the importance of NT-3 as a major support factor for Schwann cells (Meier et al., (1999) J Neurosci 19:3847-3859) over-rides its potential role as an myelin inhibitor, with the net effect that loss of NT-3 results in degradation of Schwann cell functions, including myelination. In support of this idea, Schwann cells of NT-3 null mutants showed increased expression of activated caspase-3. Finally, we observed significant reduction in width of the Schwann cell periaxonal collar in NT-3 mutant animals suggesting that loss of NT-3 and resulting reduction in MAG levels may alter signaling at the axon-glial interface.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína P0 da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Fatores de Crescimento Neural/deficiência , Células de Schwann/fisiologia , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Caspase 3/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão/métodos , Proteína P0 da Mielina/genética , Glicoproteína Associada a Mielina/genética , Fatores de Crescimento Neural/metabolismo , Proteínas de Neurofilamentos/metabolismo , Nervos Periféricos/ultraestrutura , Células de Schwann/ultraestrutura , Estatísticas não Paramétricas
9.
Clin Anat ; 20(7): 808-13, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17708566

RESUMO

Precise knowledge of muscle architecture and innervation patterns is essential for the development of accurate clinical and biomechanical models. Although the gross anatomy of the human abdominal muscles has been investigated, the finer details of their microanatomy are not well described. Fascicles were systematically sampled from each of the human abdominal muscles, and small fiber bundles from selected fascicles stained with acetylcholinesterase to determine the location of motor endplate bands, myomyonal junctions, and myotendinous junctions. Statistical analysis was used to ascertain the association between fascicular length and number of endplate bands. The number of endplate bands along a fascicle was variable between different portions of each muscle, but was strongly correlated with fascicular length (r = 0.814). In fascicles less than 50 millimeters (mm) in length, only a single endplate band was generally present, while multiple endplate bands (usually two or three) were found in fascicles longer than 50 mm. The presence of myomyonal junctions throughout the longer (>50 mm) fascicles verified that they were composed of short, intrafascicularly terminating fibers, while shorter fascicles comprised fibers spanning the entire fascicular length. This preliminary study provides evidence that multiple endplate bands are contained in some regions of the abdominal muscles, an arrangement that differs from most human appendicular muscles. It is not clear whether the variations in the described fine architectural features reflect regional differences in muscle function.


Assuntos
Músculos Abdominais/ultraestrutura , Idoso , Humanos , Masculino
10.
J Neurosci ; 25(37): 8528-33, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16162934

RESUMO

The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.


Assuntos
Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Adulto , Estimulação Elétrica , Eletromiografia , Humanos , Pessoa de Meia-Idade , Placa Motora/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/inervação , Condução Nervosa/fisiologia
11.
Eur J Neurosci ; 21(8): 2100-10, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15869506

RESUMO

This paper examines early postnatal development of the neuromuscular system in mice with a null mutation in the gene for neurotrophin-3. We report that alpha-motoneurons at first develop substantially normally, despite a known 15% deficit in their somal size [Woolley et al. (1999)Neurosci. Lett., 272, 107-110.] and the absence of proprioceptive input [Ernfors et al. (1994)Cell, 77, 503-512]. At birth, motor axons have extended into the muscle, forming normal-looking neuromuscular junctions with focal accumulations of acetylcholine receptors. Detailed ultrastructural analysis does however, reveal subtle abnormalities at this time, particularly a decrease in the extent of occupancy of the postsynaptic site by nerve terminals, and a small but significant deficit in myofibre number. After the relative normality of this early neuromuscular development, there then occurs a catastrophic postnatal loss of motor nerve terminals, resulting in complete denervation of hindlimb muscles by P7. In systematic semi-serial samples through the entire muscle endplate zones, no neuromuscular junctions can be found. Intramuscular axons are fragmented, as shown by both electron microscopic observations and neurofilament immunohistochemistry, and alpha-bungarotoxin detection of acetylcholine receptors indicates dispersal of the junctional accumulation. At earlier times (postnatal days three and four) the terminal Schwann cells show ultrastructural abnormalities, and preliminary observations suggest marked disturbance of myelination. Based on comparison with other literature, the peripheral nerve degeneration seems unlikely to have arisen as a secondary effect of de-afferentation. We discuss whether the neural degeneration is secondary to the disturbance of Schwann cell function, or due directly to a loss of neurotrophin-3 based support of the motoneuron.


Assuntos
Fibras Musculares Esqueléticas/patologia , Distrofia Muscular Animal/genética , Junção Neuromuscular/crescimento & desenvolvimento , Neurotrofina 3/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Bungarotoxinas/metabolismo , Embrião de Mamíferos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Transmissão/métodos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Proteínas de Neurofilamentos/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Sinaptofisina/metabolismo
12.
Dev Dyn ; 231(2): 402-15, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15366018

RESUMO

Integrins are cellular adhesion receptors that mediate signaling and play key roles in the development of multicellular organisms. However, their role in the cellular events leading to myotome formation is completely unknown. Here, we describe the expression patterns of the alpha1, alpha4, alpha5, alpha6, and alpha7 integrin subunits in the mouse myotome and correlate them with the expression of several differentiation markers. Our results indicate that these integrin subunits may be differentially involved in the various phases of myogenic determination and differentiation. A detailed characterization of the myogenic cell types expressing the alpha4 and alpha6 subunits showed a regionalization of the myotome and dermomyotome based on cell-adhesion properties. We conclude that alpha6beta1 may be an early marker of epaxial myogenic progenitor cells. In contrast, alpha4beta1 is up-regulated in the intercalated myotome after myocyte differentiation. Furthermore, alpha4beta1 is expressed in the hypaxial dermomyotome and is maintained by early hypaxial myogenic progenitor cells colonizing the myotome.


Assuntos
Padronização Corporal , Embrião de Mamíferos/fisiologia , Integrinas/metabolismo , Músculos/embriologia , Subunidades Proteicas/metabolismo , Animais , Biomarcadores , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Embrião de Mamíferos/anatomia & histologia , Feminino , Idade Gestacional , Hibridização In Situ , Integrinas/genética , Camundongos , Músculos/citologia , Músculos/metabolismo , Proteína MyoD/metabolismo , Gravidez , Subunidades Proteicas/genética , RNA Mensageiro/metabolismo , Receptores de Laminina/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
13.
Anat Rec A Discov Mol Cell Evol Biol ; 278(2): 571-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15164345

RESUMO

This study examines the processes by which multiply innervated, serially fibered mammalian muscles are constructed during development. We previously reported that primary myotubes of such a muscle, the guinea pig sternomastoid muscle, span from tendon to tendon and are innervated at each of the muscle's four innervation zones. Secondary myotubes form later, in association with each point of innervation (Duxson and Sheard, Dev. Dyn., 1995; 204:391-405). We now describe the further growth and development of the muscle. Secondary myotubes initially insert onto and grow along the primary myotube. However, as they reach a critical length, they encounter other secondary myotubes growing from serially adjacent innervation zones and may transfer their attachment(s) to these serially positioned secondary myotubes. Other secondary myotubes maintain attachment at one or both ends to their primary myotube. Thus, an interconnected network of primary and secondary myotubes is formed. Patterns of reactivity for cell adhesion molecules suggest that early attachment points between myotubes are the embryonic precursors of adult myomyonal junctions, characterized by the expression of alpha7Bbeta1 integrin. Finally, the results show that secondary myotubes positioned near a tendon are generally longer than those lying in the mid belly of the muscle, and we suggest that the environment surrounding the tendinous zone may somehow stimulate myotube growth.


Assuntos
Envelhecimento , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Músculos do Pescoço/embriologia , Músculos do Pescoço/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/metabolismo , Caderinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Embrião de Mamíferos , Idade Gestacional , Cobaias , Imuno-Histoquímica , Cadeias alfa de Integrinas/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculos do Pescoço/ultraestrutura , Transativadores/metabolismo , beta Catenina
14.
Adv Exp Med Biol ; 508: 495-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12171148

RESUMO

The architectural form of skeletal muscle, the pattern of activity/usage between neighbouring fibres, and the pathways for lateral and lengthwise tension delivery are all of interest in understanding muscle function and dysfunction. We have attempted to contribute to understanding of intramuscular force transmission by investigating the functional relationships between coactive motor units, and by examining the detailed molecular and morphological features at sites of tension transfer. We found that tension delivery is modulated by interaction between active and inactive fibres, that many muscle fibre terminations feature structural coupling between fibres, and that sites of tension delivery feature a variety of proteins including acetylcholinesterase, NCAM, dystrophin and two splice variants of the alpha7 integrins. We conclude that structural and molecular pathways exist to deliver force within, along, and between muscle fibres, and that the quality/quantity of tension delivered from any single fibre is at least partly a consequence of whether its neighbouring fibres are synchronously coactive.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Animais , Humanos , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/metabolismo
15.
Int J Dev Biol ; 46(4): 569-75, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12141445

RESUMO

The neurotrophins are a family of secreted proteins with critical roles in regulation of many aspects of neural development, survival and maintenance. Their actions on neural tissue are thought to be mediated by interaction with high affinity (trk family members) or low affinity (p75NTR) cell surface receptors. In general, neurotrophins are considered to be supplied in limiting quantity by cells of a target tissue or synaptic partner. To date, alpha motoneurons have been shown surprisingly indifferent to loss of neurotrophic factors. Direct evidence for supply of a critical motoneuron factor(s) by skeletal muscle and a specific uptake mechanism in vivo remains elusive. We wished to directly establish whether targets in the periphery might be potential sources of neurotrophic support for motoneurons by examining whether neurotrophin receptors are present on motoneuron nerve terminals. We have used immunofluorescence techniques with a panel of antibodies against known neurotrophin receptors (trk A, trk B, trk C, p75NTR) to map the locations of these receptors in the developing neuromuscular system of mice from our neurotrophin-3 (NT-3) knockout colony. To our surprise, we failed to locate immunoreactivity for any of these receptors in association with motor nerve endplates or terminal intramuscular axon branches, although they were found in association with a population of unidentified cells. We believe this result indicates that the neurotrophic relationship between alpha motoneurons and their target cells is not a simple one of neurotrophin supply by skeletal muscle cells and its uptake at the neuromuscular junction.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Músculos/inervação , Receptor trkA/biossíntese , Receptor trkB/biossíntese , Receptor trkC/biossíntese , Receptores de Fator de Crescimento Neural/biossíntese , Animais , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Músculo Esquelético/metabolismo , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Tempo
16.
Cell Tissue Res ; 308(2): 255-65, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12037582

RESUMO

Non-primate mammalian muscles with fascicles above 35 mm in length are composed predominantly of arrays of short, non-spanning muscle fibres, which terminate within the belly of the muscle fascicle at one or both ends. We have previously described the morphological form of various muscle-to-muscle and muscle-to-matrix junctions which are likely involved in tension transmission within one such muscle - the guinea pig sternomastoid muscle (Young et al. 2000). Here, we use immunohistochemistry to investigate the cell adhesion molecules present at these junctions. We find strong immunoreactivity against the alpha 7B integrin subunit and dystrophin, and slight reactivity against the alpha 7A integrin at all intrafascicular fibre terminations (IFTs), as well as at the muscle-tendon junction (MTJ). Tenascin, the sole ligand for alpha 9 beta 1 integrin, was absent from IFTs but present at the MTJ, suggesting the two sites are molecularly distinct. In addition to their expression at junctional sites, alpha 7B integrin and dystrophin were also expressed ubiquitously along the non-junctional sarcolemma, suggesting potential involvement in diffuse lateral transmission of tension between adjacent fibres. We conclude that the distribution of alpha 7 beta 1 integrins and dystrophin in series-fibred muscles suggests they are involved in transmission of tension from intrafascicularly terminating fibres to neighbouring fibres lying both in-series and in-parallel, via the extracellular matrix (ECM).


Assuntos
Antígenos CD/metabolismo , Distrofina/metabolismo , Cadeias alfa de Integrinas/metabolismo , Músculo Esquelético/fisiologia , Junção Neuromuscular/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolinesterase/metabolismo , Animais , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Matriz Extracelular/fisiologia , Imunofluorescência , Imuno-Histoquímica , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/inervação , Ratos , Sarcolema/fisiologia , Tenascina/metabolismo , Fixação de Tecidos , Transativadores/metabolismo , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...