Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34772186

RESUMO

This article deals with the use of photovoltaic panels at the end of their life cycle in cement composites. Attention is focused on the properties of cement composite after 100% replacement of natural aggregate with recycled glass from photovoltaic panels. This goal of replacing natural filler sources with recycled glass is based on the updated policy of the Czech Republic concerning secondary raw materials for the period of 2019-2022, which aims to increase the self-sufficiency of the Czech Republic in raw materials by replacing primary sources with secondary raw materials. The policy also promotes the use of secondary raw materials as a tool to reduce the material and energy demands of industrial production and supports the innovations and development of a circular economy within business. The research has shown that it is possible to prepare cement composite based on recycled glass from solar panels, with compressive and flexural strength after 28 days exceeding 40 MPa and 4 MPa. Furthermore, a possible modification of the cement composite with different pigments has been confirmed, without disrupting the contact zone.

2.
Materials (Basel) ; 14(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072982

RESUMO

This paper aims to develop recycled fiber reinforced cement plaster mortar with a good workability of fresh mixture, and insulation, mechanical and adhesive properties of the final hardened product for indoor application. The effect of the incorporation of different portions of three types of cellulose fibers from waste paper recycling into cement mortar (cement/sand ratio of 1:3) on its properties of workability, as well as other physical and mechanical parameters, was studied. The waste paper fiber (WPF) samples were characterized by their different cellulose contents, degree of polymerization, and residues from paper-making. The cement to waste paper fiber mass ratios (C/WPF) ranged from 500:1 to 3:1, and significantly influenced the consistency, bulk density, thermal conductivity, water absorption behavior, and compressive and flexural strength of the fiber-cement mortars. The workability tests of the fiber-cement mortars containing less than 2% WPF achieved optimal properties corresponding to plastic mortars (140-200 mm). The development of dry bulk density and thermal conductivity values of 28-day hardened fiber-cement mortars was favorable with a declining C/WPF ratio, while increasing the fiber content in cement mortars led to a worsening of the water absorption behavior and a lower mechanical performance of the mortars. These key findings were related to a higher porosity and weaker adhesion of fibers and cement particles at the matrix-fiber interface. The adhesion ability of fiber-cement plastering mortar based on WPF samples with the highest cellulose content as a fine filler and two types of mixed hydraulic binder (cement with finely ground granulated blast furnace slag and natural limestone) on commonly used substrates, such as brick and aerated concrete blocks, was also investigated. The adhesive strength testing of these hardened fiber-cement plaster mortars on both substrates revealed lime-cement mortar to be more suitable for fine plaster. The different behavior of fiber-cement containing finely ground slag manifested in a greater depth of the plaster layer failure, crack formation, and in greater damage to the cohesion between the substrate and mortar for the observed time.

3.
Life (Basel) ; 11(3)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799430

RESUMO

This article summarizes the results of a research study that was focused on the possibility of removing Cr (VI) from aqueous solution, using low-cost waste biomaterial in a batch mode. A set of seven biosorbents was used: Fomitopsis pinicola, a mixture of cones, peach stones, apricot stones, Juglans regia shells, orange peels, and Merino sheep wool. Three grain fractions (fr. 1/2, fr. 0.5/1.0, and fr. 0/0.5 mm) of biosorbents were studied. The aim was to find the most suitable biosorbent that can be tested with real samples. The influence of other factors on the course of biosorption was studied as well (chemical activation of the biosorbent, pH value, rotation speed during mixing, temperature, and the influence of biosorbent concentration). The use of chemical activation and adjustment of the pH to 1.1 to 2.0 make it possible to increase their sorption capacity and, for some biosorbents, to shorten the exposure times. Two kinetic models were used for the analysis of the experimental data, to explain the mechanism of adsorption and its possible speed control steps: pseudo-first and pseudo-second-order. The pseudo-second-order kinetic model seems to be the most suitable for the description of the experimental data. The thermodynamic parameters suggest that the biosorption was endothermic and spontaneous. In the biosorption equilibrium study, the adsorption data were described by using Langmuir and Freundlich adsorption isotherms. The Langmuir model was applicable to describe the adsorption data of all biosorbents. Both models are suitable for chemically treated sheep fleece and peach stones.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33023188

RESUMO

This article deals with the possibility of using a biosorbent in the form of a mixture of cones from coniferous trees to remove the residual concentration of hazardous metals contained in hazardous waste, which is disposed of in a neutralization station. The efficiency of the tested biosorbent in removing Ni, Zn, Cu, and Fe was monitored here. Laboratory research was carried out before the actual testing of the biosorbent directly in the operation of the neutralization station. With regard to the planned use of the biosorbent in the operational test, the laboratory experiments were performed in a batch mode and for the most problematic metals (Ni and Zn). The laboratory tests with real wastewater have shown that the biosorbent can be used to remove hazardous metals. Under the given conditions, 96% of Ni and 19% of Zn were removed after 20 min when using NaOH activated biosorbent with the concentration of 0.1 mol L-1. The inactivated biosorbent removed 93% of Ni and 31% of Zn. The tested biosorbent was also successful during the operational tests. The inactivated biosorbent was applied due to the financial costs. It was used for the pre-treatment of hazardous waste in a preparation tank, where a significant reduction in the concentration of hazardous metals occurred, but the values of Ni, Cu, and Zn still failed to meet the emission limits. After 72 h, we measured 10 mg L-1 from the original 4,056 mg L-1 of Ni, 1 mg L-1 from the original 2,252 mg L-1 of Cu, 1 mg L-1 from the original 4,020 mg L-1 of Zn, and 7 mg L-1 from the original 1,853 mg L-1 of Fe. However, even after neutralization, the treated water did not meet the emission limits for discharging into the sewer system. The biosorbent was, therefore, used in the filtration unit as well, which was placed in front of the Parshall flume. After passing through the filtration unit, the concentrations of all the monitored parameters were reduced to a minimum, and the values met the prescribed emission limits. The biosorbent was further used to thicken the residual sludge in the waste pre-treatment tank, which contributed to a significant reduction in the overall cost of disposing of residual hazardous waste. This waste was converted from liquid to solid-state.


Assuntos
Metais Pesados/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Adsorção , República Tcheca , Metais , Águas Residuárias , Zinco/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-27598181

RESUMO

This work deals with the natural degradation of leachate from an old reclaimed landfill by means of a biological pond. Hamra is a municipal waste landfill with a limited formation of leachate, which has already been reclaimed. Leachate in this location is disposed of using natural biogeochemical method, and it is subsequently discharged into a surface stream. The main issue dealt with here is the long-term effectiveness of natural degradation of leachate and the limits of its use. The solutions of these fundamental questions took advantage of a database of analytical assessments collected during a long-term monitoring of the landfill site. The primary degradation trends and the long-term development have been revealed and described on the basis of these assessments. The main benefit of the biological pond is the dilution of the dominant contaminants, especially of inorganic character. In the case of ammonium ions, they show nitrification caused by their transition from the reduction into oxidizing environment. From a long term point of view, the disadvantage of natural degradation of leachate can be seen in the gradual reduction in efficiency due to the concentration of the substances or an undesired growth of water plants, which can be successfully eliminated, for example, by means of targeted aeration and by maintaining vegetation in the pond and its surroundings. The biological potential of the locality is very favorable and, despite its anthropogenic load, it creates a location with suitable living conditions for many water animals and plants. That is why it can be concluded that the efficiency of the natural biochemical cleaning elements can be considered as sufficient, taking into account the nature of the deposited waste, the quantity and quality of leachate, as well as the climate character of the locality.


Assuntos
Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/metabolismo , Animais , Biodegradação Ambiental , República Tcheca , Lagoas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...