Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 18(20): 5316-5319, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27704864

RESUMO

A one-step, operationally simple protocol for the synthesis of isomerically pure rhodamine dyes from phthalaldehydic acids is reported. Using a mixture of 2,2,2-trifluoroethanol and water as reaction media allows for clean and efficient formation of various rhodamines as a single isomer. This method was successfully applied to the synthesis of several isomerically pure rhodamines, including 6-carboxytetramethylrhodamine and 6-carboxy-X-rhodamine (6-CXR) on gram scale. A simple, one-step, Pd-catalyzed hydroxycarbonylation approach to phthalaldehydic acids from appropriately substituted dihalobenzadehydes is also described.

2.
J Immunol Methods ; 431: 11-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851520

RESUMO

Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be beneficial for screening a large number of antibody samples during early monoclonal development phase.


Assuntos
Anticorpos/análise , Corantes Fluorescentes/química , Piperazinas/química , Rodaminas/química , Anticorpos/imunologia , Linhagem Celular Tumoral , Cetuximab/química , Cetuximab/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Trastuzumab/química , Trastuzumab/imunologia
3.
J Am Chem Soc ; 126(51): 16850-9, 2004 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-15612724

RESUMO

The use of anionic water-soluble conjugated polymers (CPs) for sensing the presence of avidin by use of a biotin-modified fluorescence quencher was studied. The molecules involved in the study included poly[2-methoxy-5-(3'-propyloxysulfonate)-1,4-phenylenevinylene] with either lithium (Li+-MPS-PPV) or sodium (Na(+)-MPS-PPV) countercations, the well-defined oligomer pentasodium 1,4-bis(4'(2",4"-bis(butoxysulfonate)-styryl)-styryl)2-butoxysulfonate-5-methoxybenzene (5R5-), the quenchers N-methyl-4,4'-pyridylpyridinium iodide (mMV+) and [N-(biotinoyl)-N'-(acetyl 4,4'-pyridylpyridinium iodide)] ethylenediamine (BPP+), which contains a molecular recognition fragment (biotin) attached to a unit that accepts an electron from a CP excited state, and the proteins avidin, tau, BSA, and pepsin A. Fluorescence quenching experiments were examined in a variety of conditions. Experiments carried out in water and in ammonium carbonate buffer (which ensures avidin/biotin complexation) reveal that nonspecific interactions between the CP and the proteins cause substantial perturbations on the CP fluorescence. The overall findings are not consistent with a simple mechanism whereby avidin complexation of BPP+ leads to encapsulation of the quencher molecule and recovery of Li+-MPS-PPV fluorescence. Instead, we propose that binding of BPP+ to avidin results in the quenching unit attaching to a positively charged macromolecule. Electrostatic attraction to the negatively charged conjugated polymer results in closer proximity to the quencher. Therefore, more enhanced fluorescence quenching is observed.


Assuntos
Avidina/química , Técnicas Biossensoriais/métodos , Polivinil/química , Avidina/análise , Cátions Monovalentes , Etilenodiaminas/química , Lítio/química , Pepsina A/análise , Pepsina A/química , Soroalbumina Bovina/análise , Soroalbumina Bovina/química , Sódio/química , Solubilidade , Espectrometria de Fluorescência , Eletricidade Estática , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...