Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9894, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688978

RESUMO

This study aims to decipher crucial biomarkers regulated by p73 for the early detection of colorectal cancer (CRC) by employing a combination of integrative bioinformatics and expression profiling techniques. The transcriptome profile of HCT116 cell line p53 - / - p73 + / + and p53 - / - p73 knockdown was performed to identify differentially expressed genes (DEGs). This was corroborated with three CRC tissue expression datasets available in Gene Expression Omnibus. Further analysis involved KEGG and Gene ontology to elucidate the functional roles of DEGs. The protein-protein interaction (PPI) network was constructed using Cytoscape to identify hub genes. Kaplan-Meier (KM) plots along with GEPIA and UALCAN database analysis provided the insights into the prognostic and diagnostic significance of these hub genes. Machine/deep learning algorithms were employed to perform TNM-stage classification. Transcriptome profiling revealed 1289 upregulated and 1897 downregulated genes. When intersected with employed CRC datasets, 284 DEGs were obtained. Comprehensive analysis using gene ontology and KEGG revealed enrichment of the DEGs in metabolic process, fatty acid biosynthesis, etc. The PPI network constructed using these 284 genes assisted in identifying 20 hub genes. Kaplan-Meier, GEPIA, and UALCAN analyses uncovered the clinicopathological relevance of these hub genes. Conclusively, the deep learning model achieved TNM-stage classification accuracy of 0.78 and 0.75 using 284 DEGs and 20 hub genes, respectively. The study represents a pioneer endeavor amalgamating transcriptomics, publicly available tissue datasets, and machine learning to unveil key CRC-associated genes. These genes are found relevant regarding the patients' prognosis and diagnosis. The unveiled biomarkers exhibit robustness in TNM-stage prediction, thereby laying the foundation for future clinical applications and therapeutic interventions in CRC management.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Mapas de Interação de Proteínas , Proteína Tumoral p73 , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Mapas de Interação de Proteínas/genética , Prognóstico , Células HCT116 , Transcriptoma , Estimativa de Kaplan-Meier
2.
Comput Biol Chem ; 108: 107990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000327

RESUMO

BACKGROUND AND OBJECTIVE: Non-small cell lung cancer (NSCLC) exhibits intrinsic molecular heterogeneity, primarily driven by the mutation of specific biomarkers. Identification of these biomarkers would assist not only in distinguishing NSCLC into its major subtypes - Adenocarcinoma and Squamous Cell Carcinoma, but also in developing targeted therapy. Medical practitioners use one or more types of omic data to identify these biomarkers, copy number variation (CNV) being one such type. CNV provides a measure of genomic instability, which is considered a hallmark of carcinoma. However, the CNV data has not received much attention for biomarker identification. This paper aims to identify biomarkers for NSCLC using CNV data. METHODS: An eXplainable AI (XAI)-driven L1-regularized deep learning architecture, XL1R-Net, is proposed that introduces a novel modification of the standard L1-regularized gradient descent algorithm to arrive at an improved deep neural classifier for NSCLC subtyping. Further, XAI-based feature identification has been used to leverage the trained classifier to uncover a set of twenty NCSLC-relevant biomarkers. RESULTS: The identified biomarkers are evaluated based on their classification performance and clinical relevance. Using Multilayer Perceptron (MLP)-based model, a classification accuracy of 84.95% using 10-fold cross-validation is achieved. Moreover, the statistical significance test on the classification performance also revealed the superiority of the MLP model over the competitive machine learning models. Further, the publicly available Drug-Gene Interaction Database reveals twelve of the identified biomarkers as potentially druggable. The K-M Plotter tool was used to verify eighteen of the identified biomarkers with a high probability of predicting NSCLC patients' likelihood of survival. While nine of the identified biomarkers confirm the recent literature, five find mention in the OncoKB Gene List. CONCLUSION: A set of seven novel biomarkers that have not been reported in the literature could be investigated for their potential contribution towards NSCLC therapy. Given NSCLC's genetic diversity, using only one omics data type may not adequately capture the tumor's complexity. Multiomics data and its integration with other sources will be examined in the future to better understand NSCLC heterogeneity.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Variações do Número de Cópias de DNA , Biomarcadores
3.
Comput Biol Med ; 153: 106544, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652866

RESUMO

Non-Small Cell Lung Cancer (NSCLC) exhibits intrinsic heterogeneity at the molecular level that aids in distinguishing between its two prominent subtypes - Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC). This paper proposes a novel explainable AI (XAI)-based deep learning framework to discover a small set of NSCLC biomarkers. The proposed framework comprises three modules - an autoencoder to shrink the input feature space, a feed-forward neural network to classify NSCLC instances into LUAD and LUSC, and a biomarker discovery module that leverages the combined network comprising the autoencoder and the feed-forward neural network. In the biomarker discovery module, XAI methods uncovered a set of 52 relevant biomarkers for NSCLC subtype classification. To evaluate the classification performance of the discovered biomarkers, multiple machine-learning models are constructed using these biomarkers. Using 10-Fold cross-validation, Multilayer Perceptron achieved an accuracy of 95.74% (±1.27) at 95% confidence interval. Further, using Drug-Gene Interaction Database, we observe that 14 of the discovered biomarkers are druggable. In addition, 28 biomarkers aid the prediction of the survivability of the patients. Out of 52 discovered biomarkers, we find that 45 biomarkers have been reported in previous studies on distinguishing between the two NSCLC subtypes. To the best of our knowledge, the remaining seven biomarkers have not yet been reported for NSCLC subtyping and could be further explored for their contribution to targeted therapy of lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...