Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Adv Exp Med Biol ; 1451: 219-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801581

RESUMO

The monkeypox virus (MPXV), responsible for human disease, has historically been limited to the African countries, with only a few isolated instances reported elsewhere in the world. Nevertheless, in recent years, there have been occurrences of monkeypox in regions where the disease is typically absent, which has garnered global interest. Within a period of less than four months, the incidence of MPXV infections has surged to over 48,000 cases, resulting in a total of 13 deaths. This chapter has addressed the genetics of the pox virus, specifically the human monkeypox virus, and its interaction with the immune systems of host organisms. The present chapter is skillfully constructed, encompassing diagnostic methodologies that span from traditional to developing molecular techniques. Furthermore, the chapter provides a succinct analysis of the therapeutic methods employed, potential future developments, and the various emerging difficulties encountered in illness management.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Monkeypox virus/imunologia , Monkeypox virus/patogenicidade , Mpox/diagnóstico , Mpox/imunologia , Mpox/epidemiologia , Mpox/virologia , Mpox/terapia , Interações Hospedeiro-Patógeno/imunologia , Animais
2.
Indian J Clin Biochem ; 39(2): 241-247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577138

RESUMO

Multiple diseases and disorders are connected with occupational and environmental exposure risk. It is also well-established that chemicals and chemical mixtures have an influence on the immune cells of humans. This is an important field of research that has been pursued extensively in relation to autoimmune illnesses, allergy/asthma, and lung cancer, but Prostate Carcinoma has received rare reports. Chronic chemical exposure is known to produce inflammation, which is one of the most prominent characteristics of all malignancies. Changes in the ratio of pro-inflammatory to anti-inflammatory molecules are thought to be a key factor in the emergence of inflammation. Prostate gland cells express the pro-inflammatory cytokine interleukin-18 (IL-18), which is a major facilitator of immunological responses. Conversely, interleukin-10 (IL-10) is an anti-inflammatory cytokine that is linked to immune responses and inhibits the development of an inflammatory environment. Our goal is to investigate the inflammatory status of IL-18 (pro-) and IL-10 (anti-) in a variety of occupationally exposed populations in patients with Benign Prostate Hyperplasia (BPH) and patients with Prostate Carcinoma. The present study was conducted with 664 subjects, comprising 285 Prostate Carcinoma patients, 94 BPH patients and 285 controls. The subjects of BPH and Prostate Carcinoma were screened and confirmed on the basis of Prostate Serum Antigen (PSA) and pathological biopsy. All subjects were categorized as per their occupational exposure into various groups. The pro-inflammatory and anti-inflammatory Interleukins (IL-18 and IL-10) and serum PSA levels were analysed by using corresponding quantitative ELISA kits. The results showed that as compared to control participants, the serum PSA levels were higher in the Prostate Carcinoma and BPH groups. When mean levels of IL-18 were compared between various occupational groups, Tanners (tanning industry), Agriculture, and Ordnance workers had significantly higher levels (P < 0.05) of IL-18 than sedentary workers. The pro-inflammatory cytokine (IL-18) levels were also found to be aggravated in Prostate Carcinoma compared to BPH and controls. According to the findings of the current study, the levels of inflammatory cytokines (IL-18 and IL-10) in various occupational groups of BPH, Prostate Carcinoma, and controls were altered. Long-term occupational exposure may have a negative influence on inflammation levels and the immune system; therefore, preventative measures should be explored for improved health.

3.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189079, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280470

RESUMO

Angiogenesis is a crucial process for tissue development, repair, and tumor survival. Vascular endothelial growth factor (VEGF) is a key driver secreted by cancer cells, promoting neovascularization. While VEGF's role in angiogenesis is well-documented, its influence on the other aspects in tumor microenvironemt is less discussed. This review elaborates on VEGF's impact on intercellular interactions within the tumor microenvironment, including how VEGF affects pericyte proliferation and migration and mediates interactions between tumor-associated macrophages and cancer cells, resulting in PDL-1-mediated immunosuppression and Nrf2-mediated epithelial-mesenchymal transition. The review discusses VEGF's involvement in intra-organelle crosstalk, tumor metabolism, stemness, and epithelial-mesenchymal transition. It also provides insights into current anti-VEGF therapies and their limitations in cancer treatment. Overall, this review aims to provide a thorough overview of the current state of knowledge concerning VEGF signaling and its impact, not only on angiogenesis but also on various other oncogenic processes.


Assuntos
Angiogênese , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular , Humanos , Neoplasias/patologia , Microambiente Tumoral
4.
Redox Biol ; 68: 102958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948927

RESUMO

Astrocytic dysfunction is central to age-related neurodegenerative diseases. However, the mechanisms leading to astrocytic dysfunction are not well understood. We identify that among the diverse cellular constituents of the brain, murine and human astrocytes are enriched in the expression of CBS. Depleting CBS in astrocytes causes mitochondrial dysfunction, increases the production of reactive oxygen species (ROS) and decreases cellular bioenergetics that can be partially rescued by exogenous H2S supplementation or by re-expressing CBS. Conversely, the CBS/H2S axis, associated protein persulfidation and proliferation are decreased in astrocytes upon oxidative stress which can be rescued by exogenous H2S supplementation. Here we reveal that in the aging brain, the CBS/H2S axis is downregulated leading to decreased protein persulfidation, together augmenting oxidative stress. Our findings uncover an important protective role of the CBS/H2S axis in astrocytes that may be disrupted in the aged brain.


Assuntos
Envelhecimento , Astrócitos , Encéfalo , Cistationina beta-Sintase , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cistationina/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo
5.
Indian J Community Med ; 48(2): 285-290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323740

RESUMO

Background: Thyroid disorders are one of the commonest endocrine problems among pregnant women. It is often argued that it is not only overt, but subclinical thyroid dysfunction also has similar adverse effects on maternal and fetal outcomes. There is a huge deficiency of data from the Indian population to assess the prevalence of thyroid dysfunction in pregnancy. This study aimed to determine the prevalence of thyroid disorders in pregnancy and their impact on obstetrical outcomes in the Indian population. The study also had the objective of finding a correlation between maternal and fetal thyroid-stimulating hormone (TSH) levels in hypothyroid pregnancies. Materials and Methods: Around 1055 pregnant women in the first and second trimesters were enrolled in the study. A detailed history was noted and general examinations were done. Apart from routine obstetrical investigations, TSH level estimation was done. If the TSH level was deranged, then free T4 (fT4) and free T3 (fT3) levels were also estimated. Furthermore, 50 hypothyroid and euthyroid pregnant women from the same cohort were followed till delivery. Their obstetrical and perinatal outcomes were noted. Results: The prevalence of thyroid dysfunction was 36.5% in this study, which was quite high in the population. Moreover, hypothyroid groups were prone to have pregnancy-induced hypertension (P = 0.03), intrauterine growth restriction (P = 0.05), and preterm delivery (P = 0.04) as compared to control. Cesarean section rate for fetal distress was significantly higher among pregnant hypothyroid women (P = 0.05). Neonatal respiratory distress and low appearance, pulse, grimace, activity, and respiration (APGAR) () scores were significantly more in the hyperthyroidism group (P = 0.04 and P = 0.02, respectively). Maternal TSH was significantly correlated with hemoglobin levels, HbA1c, and systolic blood pressure. Conclusions: Significant adverse effects on maternal and fetal outcomes were seen emphasizing the importance of routine antenatal thyroid screening.

6.
Sci Rep ; 13(1): 8074, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202389

RESUMO

In the present work, we have developed a polymer based gas sensor. The polymer nanocomposites are synthesized by the chemical oxidative polymerization of aniline with ammonium persulfate and sulfuric acid. The fabricated sensor is able to achieve a sensing response of 4.56% for PANI/MMT-rGO at 2 ppm of hydrogen cyanide (HCN) gas. The sensitivity of the sensors PANI/MMT and PANI/MMT-rGO are 0.89 ppm-1 and 1.1174 ppm-1 respectively. The increase in the sensitivity of the sensor may be due to an increase in the surface area provided by MMT and rGO which provided more binding sites for the HCN gas. The sensing response of the sensor increases as the concentration of the gas exposed increases but saturates after 10 ppm. The sensor recovers automatically. The sensor is stable and can work for 8 months.

7.
8.
Indian J Clin Biochem ; 38(1): 73-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684498

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the common types of cancer. Its progression follows a transition from oral potentially malignant disorders (OPMDs) such as oral submucous fibrosis (OSMF). Epigenetic modifiers, especially microRNAs (miRNAs), have an appreciable role in the regulation of various carcinogenic pathways which are being used as biomarkers. miRNAs may also be helpful in the differentiation of oral submucous fibrosis from oral squamous cell carcinoma. Three miRNAs, miR-221-3p, miR133a-3p, and miR-9-5p, were found differentially expressed in many cancers in the literature search supported by our preliminary database search-based screening. The literature and our functional enrichment analysis in an earlier study have reported these miRNAs to regulate carcinogenesis at various steps. In the present study, the expression of these miRNAs was examined in 34 histopathologically confirmed OSCC, 30 OSMF, and 29 control (healthy volunteers) human samples. There was a significant downregulation of miRNA-133a-3p in OSCC compared to OSMF and controls, whereas there was up-regulation in oral submucous fibrosis compared to controls. There was no significant difference in the expression of miR-221-3p between OSCC and OSMF, but an upregulation in OSCC compared to controls. miR-9-5p was also found upregulated in both OSCC and OSMF. Further, miR-133a-3p expression was negatively correlated with age, smoking, drinking status, and AJCC staging, whereas miR-9-5p expression was only positively associated with tobacco/ areca nut chewing. The ROC plots, logistic regression model generated, and the correlation between the expression of miR-9-5p and miR-133a-3p in blood and tissue suggests that these could be used as risk stratification biomarkers.

9.
J Cancer Res Ther ; 19(Suppl 2): S551-S559, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38384018

RESUMO

ABSTRACTS: Aberrant methylation pattern leads to altered gene expression, that is, involved in the transformation of various cancers, including oral squamous cell carcinoma (OSCC). In the present study, an attempt has been made to examine the association of global and promoter-specific methylation of tumor suppressor genes in patients with OSCC and oral submucous fibrosis (OSMF). Promoter-specific methylation of tumor suppressor genes P16, SOCS1, and SHP1 had been studied earlier for their aberrant methylation patterns in other cancers; however, these studies were mainly conducted in-vitro or in animal models, and as such, only a few studies are available on human samples. In the present study evaluation of promoter-specific methylation of genes P16, SOCS1, and SHP1 in 76 patients' blood and tissue samples was done and compared with methylation of 35 healthy control samples using qPCR. Further, these samples were analyzed for global methylation patterns using ELISA. The results have shown a significant decreasing trend of promoter methylation (OSCC > OSMF > Controls); the methylation indices (MI) were significantly higher in OSCC than in the controls. The median MI of three genes for OSCC were P16MI (0.96), SHP1MI (0.79), and SOCS1 (0.80). Similarly, median MIs for OSMF were P16MI (0.18), SHP1 MI (0.19), and SOCS1 MI (0.5) against controls with MI (0) for each of the three genes. The global methylation %mC values were 1.9, 0.5, and 0.1, respectively. The values of MI and %mC were found to correlate with various risk factors such as tobacco, smoking, and alcohol consumption, which are positively involved in OSMF pathogenesis followed by oral cancer progression. Further, the methylation trend in tissue was reflected in blood samples, proving a window for methylation load to be used as a lesser invasive biomarker. The sensitivity and specificity of methylation load were also found reasonable. Therefore, the current study suggests that there may be a role of global and promoter-specific methylation load in the transition of OSMF to OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fibrose Oral Submucosa , Humanos , Carcinoma de Células Escamosas/patologia , Metilação de DNA , Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Bucais/patologia , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
10.
NPJ Precis Oncol ; 6(1): 93, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543867

RESUMO

The ubiquitin-specific peptidase 10 (USP10) plays a context-specific, pro or anti-tumorigenic role in different malignancies. However, the role of USP10 in pancreatic cancer remains unclear. Our protein and RNA level analysis from archived specimens and public databases show that USP10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and expression correlates with poor overall patient survival. Phenotypically, silencing USP10 decreased viability, clonal growth and invasive properties of pancreatic cancer cells. Mechanistically, silencing USP10 upregulated BiP and induced endoplasmic reticulum (ER) stress that led to an unfolded protein response (UPR) and upregulation of PERK, IRE1α. Decreased cell viability of USP10 silenced cells could be rescued by a chemical chaperone that promotes protein folding. Our studies suggest that USP10 by protecting pancreatic cancer cells from ER stress may support tumor progression.

11.
Nucleic Acids Res ; 50(19): 11028-11039, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36243983

RESUMO

The lysine-rich coiled-coil 1 (KRCC1) protein is overexpressed in multiple malignancies, including ovarian cancer, and overexpression correlates with poor overall survival. Despite a potential role in cancer progression, the biology of KRCC1 remains elusive. Here, we characterize the biology of KRCC1 and define its role in the DNA damage response and in cell cycle progression. We demonstrate that KRCC1 associates with the checkpoint kinase 1 (CHK1) upon DNA damage and regulates the CHK1-mediated checkpoint. KRCC1 facilitates RAD51 recombinase foci formation and augments homologous recombination repair. Furthermore, KRCC1 is required for proper S-phase progression and subsequent mitotic entry. Our findings uncover a novel component of the DNA damage response and a potential link between cell cycle, associated damage response and DNA repair.


Assuntos
Proteínas Quinases , Rad51 Recombinase , Proteínas Quinases/genética , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo do DNA , Dano ao DNA , Reparo de DNA por Recombinação
12.
Mater Today (Kidlington) ; 56: 79-95, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36188120

RESUMO

The tumor microenvironment (TME) plays a key role in the poor prognosis of many cancers. However, there is a knowledge gap concerning how multicellular communication among the critical players within the TME contributes to such poor outcomes. Using epithelial ovarian cancer (EOC) as a model, we show how crosstalk among cancer cells (CC), cancer associated fibroblasts (CAF), and endothelial cells (EC) promotes EOC growth. We demonstrate here that co-culturing CC with CAF and EC promotes CC proliferation, migration, and invasion in vitro and that co-implantation of the three cell types facilitates tumor growth in vivo. We further demonstrate that disruption of this multicellular crosstalk using a gold nanoparticle (GNP) inhibits these pro-tumorigenic phenotypes in vitro as well as tumor growth in vivo. Mechanistically, GNP treatment reduces expression of several tumor-promoting cytokines and growth factors, resulting in inhibition of MAPK and PI3K-AKT activation and epithelial-mesenchymal transition - three key oncogenic signaling pathways responsible for the aggressiveness of EOC. The current work highlights the importance of multicellular crosstalk within the TME and its role for the aggressive nature of EOC, and demonstrates the disruption of these multicellular communications by self-therapeutic GNP, thus providing new avenues to interrogate the crosstalk and identify key perpetrators responsible for poor prognosis of this intractable malignancy.

13.
Adv Sci (Weinh) ; 9(31): e2200491, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36104215

RESUMO

By exploiting the self-therapeutic properties of gold nanoparticles (GNPs) a molecular axis that promotes the growth of high-grade serous ovarian cancer (HGSOC), one of the deadliest gynecologic malignancies with poorly understood underlying molecular mechanisms, has been identified. The biodistribution and toxicity of GNPs administered by intravenous or intraperitoneal injection, both as a single dose or by repeated dosing over two weeks are first assessed; no biochemical or histological toxicity to vital organs is found. Using an orthotopic patient-derived xenograft (PDX) model of HGSOC, the authors then show that GNP treatment robustly inhibits tumor growth. Investigating the molecular mechanisms underlying the GNP efficacy reveals that GNPs downregulate insulin growth factor binding protein 2 (IGFBP2) by disrupting its autoregulation via the IGFBP2/mTOR/PTEN axis. This mechanism is validated by treating a cell line-based human xenograft tumor with GNPs and an mTOR dual-kinase inhibitor (PI-103), either individually or in combination with GNPs; GNP and PI-103 combination therapy inhibit ovarian tumor growth similarly to GNPs alone. This report illustrates how the self-therapeutic properties of GNPs can be exploited as a discovery tool to identify a critical signaling axis responsible for poor prognosis in ovarian cancer and provides an opportunity to interrogate the axis to improve patient outcomes.


Assuntos
Nanopartículas Metálicas , Neoplasias Ovarianas , Feminino , Humanos , Ouro/química , Insulina , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , PTEN Fosfo-Hidrolase , Distribuição Tecidual , Serina-Treonina Quinases TOR , Animais
15.
Indian J Clin Biochem ; 37(3): 267-274, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35873619

RESUMO

Diabetic Retinopathy (DR), a debilitating microvascular complication of diabetes, is one of the leading cause of blindness. However, the pathogenesis of this disease is not fully understood. Few Studies have reported the role of MicroRNA (miRNA), which is deregulated or altered in many diseases. Further, few pathways linked genes which have been suggested to be regulated by miRNAs, may play an important role in the regulation of glucose homeostasis and eventually may contribute to the establishment of DR. However, the roles of microRNAs (miRNAs) in DR are still not very clear. In current review, we explored various findings of scientific database demonstrating the role of miRNA in the progression and development of Diabetic Retinopathy.

16.
World J Stem Cells ; 14(4): 310-313, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35662862

RESUMO

Epigenetic modifications have been observed as a decline in miRNA-21 expression and breast cancer stem cell (CSC) population after 3 cycles of standard chemotherapy. The epigenetic response (miRNAs expression) and CSCs are also correlated in patients with Breast Cancer. In patients who tolerated chemotherapy well, miRNA-21 (non-coding RNA) expression decreased significantly after three cycles of chemotherapy. The miRNA-21 expression in breast cancer tissue was quantified by quantitative PCR (real-time PCR) using the standard protocol. In addition, breast CSCs (CD44+/CD24-) were also decreased in these patients. The miRNA-21 regulates cell division, proliferation, and autophagy of cancerous cells (as it targets phosphatase and tensin homolog/AKT/transcription factor EB/programmed cell death 4/autophagy-related protein 5 and chemotherapy also produces similar effects), thereby contributing to these benefits. Therefore, when all of the targets on genes have been explored by mimic miRNA, chemotherapy combined with anti-miRNA21 therapy may prove useful in the care of cancer patients.

17.
Inflammation ; 45(2): 554-566, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098407

RESUMO

Substance use disorders are known to be associated with inflammation. However, the dynamics of inflammatory cytokines and microRNA in chronic opium use is yet unexplored. The current study determined the levels of inflammatory cytokines TNF-α, IL-6, IL-10 and immune-regulatory miR-155 and miR-187 expressions in chronic opioid use disorder. Adults (n = 48) meeting the 5th Edition of the DSM criteria regarding opioid use disorder and healthy controls (n = 46) were included in the study. Inflammatory cytokines IL-10, IL-6, and TNF-α were analyzed from serum samples, and peripheral blood mononuclear cells processed for miRNA expression. Cases showed significantly raised IL-10 and TNF-α and reduced IL-6. Dose-dependent upregulation of miR-155-5p and miR-187-5p was evident at opium dose >1500 g/month, with a corresponding increase of TNF-α and IL-10. MiR-155 showed a significant positive correlation with IL-6 and TNF-α levels, while miR-187 showed a significant negative association with TNF-α at ≥1000 g/month consumption. Therefore, increasing consumption of opium probably enhances inflammation leading to immunomodulation and aberrant expression of hsa-miR-155-5p and hsa-miR-187-5p in opioid use disorder.


Assuntos
Citocinas , MicroRNAs , Citocinas/metabolismo , Interleucina-10 , Interleucina-6 , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , Ópio , Fator de Necrose Tumoral alfa/metabolismo
18.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802524

RESUMO

Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.

19.
Cell Stress ; 4(11): 252-260, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33150300

RESUMO

Uterine carcinosarcoma (UCS) is a relatively infrequent, but extremely aggressive endometrial malignancy. Although surgery and chemotherapy have improved outcomes, overall survival (OS) remains dismal due to the lack of targeted therapy and biphasic (epithelial and mesenchymal) nature that renders the tumor aggressive and difficult to manage. Here we report a role of transforming growth factor-ß (TGFß) in maintaining epithelial to mesenchymal transition (EMT) phenotype and aggressiveness in UCS. Using a 3D-culture system, we evaluated the efficacy of the transforming growth factor-ß receptor-I (TGFßR1) kinase inhibitor Galunisertib (GLT), alone and in combination with standard chemotherapeutic drugs used for the management of UCS. We demonstrate that GLT by inhibiting canonical and non-canonical signaling emanating from transforming growth factor-ß1 (TGFß1) reduces cellular viability, invasion, clonal growth and differentiation. Interestingly, GLT sensitizes UCS cells to chemotherapy both in vitro and in in vivo preclinical tumor model. Hence, targeting TGFß signaling, in combination with standard chemotherapy, may be exploited as an important strategy to manage the clinically challenging UCS.

20.
Sci Adv ; 6(27)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32937467

RESUMO

The stringent expression of the hypoxia inducible factor-1α (HIF-1α) is critical to a variety of pathophysiological conditions. We reveal that, in normoxia, enzymatic action of cystathionine ß-synthase (CBS) produces H2S, which persulfidates prolyl hydroxylase 2 (PHD2) at residues Cys21 and Cys33 (zinc finger motif), augmenting prolyl hydroxylase activity. Depleting endogenous H2S either by hypoxia or by inhibiting CBS via chemical or genetic means reduces persulfidation of PHD2 and inhibits activity, preventing hydroxylation of HIF-1α, resulting in stabilization. Our in vitro findings are further supported by the depletion of CBS in the zebrafish model that exhibits axis defects and abnormal intersegmental vessels. Exogenous H2S supplementation rescues both in vitro and in vivo phenotypes. We have identified the persulfidated residues and defined their functional significance in regulating the activity of PHD2 via point mutations. Thus, the CBS/H2S/PHD2 axis may provide therapeutic opportunities for pathologies associated with HIF-1α dysregulation in chronic diseases.


Assuntos
Cistationina beta-Sintase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Animais , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...