Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959448

RESUMO

In this study, the microstructural behavior of the advanced Ti-5.7Al-3.8Mo-1.2Zr-1.3Sn-0.15Si (VT8M-1) alloy during rotary swaging (RS) was investigated. VT8M-1 has increased heat resistance and is considered a replacement for the Ti-6Al-4V alloy. It was shown that, during RS, the evolution of the primary a phase is characterized by the formation of predominantly low-angle boundaries according to the mechanism of continuous dynamic recrystallization. The density of low-angle boundaries increases three times: from 0.38 µm-1 to 1.21 µm-1 after RS. The process of spheroidization of the lamellar (a + b) component is incomplete. The average size of globular a and b particles was 0.3 µm (TEM). It is shown that the microstructures after RS (ε = 1.56) and equal-channel angular pressing (ECAP) (ε = 1.4) are significantly different. The temperature-velocity regime and the predominance of shear deformations during ECAP contributed to a noticeable refinement of the primary a-phase and a more complete development of globularization of the lamellar (a+b) component. EBSD studies have shown that RS leads to the formation of a structure with a higher density of low- and high-angle boundaries compared to the structure after ECAP. The results are useful for predicting alloy microstructure in the production of long rods that are further used in forging operations.

2.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837067

RESUMO

In this paper, the superplastic behavior of the two-phase titanium alloy VT6 with an ultrafine-grained (UFG) structure produced by equal-channel angular pressing is examined. The deformation of specimens with a UFG structure was performed by upsetting in a temperature range of 650-750 °C and strain rate range of 1 × 10-4-5 × 10-1 s-1. Under these conditions, an increased strain-rate sensitivity coefficient m was observed. The calculation of apparent activation energy showed values in a range of 160-200 kJ/mol while the superplastic flow of the VT6 alloy was occurring. When superplastic behavior (SPB) was impeded, the energy Q grew considerably, indicating a change in mechanism from grain-boundary sliding (GBS) to bulk diffusion. A change in temperature and strain rate influenced the development of superplastic flow and the balance of relaxation processes. Microstructural analysis shows that the UFG state is preserved at upsetting temperatures of 650 and 700 °C. A decrease in strain rate and/or an increase in upsetting temperature promoted a more active development of recrystallization and grain growth, as well as α2-phase formation. In a certain temperature and strain-rate range of the UFG VT6 alloy, α2-phase plates were found, the formation of which was controlled by diffusion. The effect of the α2-phase on the alloy's mechanical behavior is discussed.

3.
Materials (Basel) ; 16(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770323

RESUMO

In this work, the strength properties and impact toughness of the ultrafine-grained (UFG) Ti-6Al-4V titanium alloy produced by severe plastic deformation (SPD) in combination with upsetting were studied, depending on the direction of crack propagation. In the billets processed by equal-channel angular pressing (ECAP), the presence of anisotropy of ultimate tensile strength (UTS) and ductility was observed, conditioned by the formation of a metallographic and crystallographic texture. At the same time, the ECAP-processed UFG alloy exhibited satisfactory values of impact toughness, ~0.42 MJ/m2. An additional upsetting of the ECAP-processed billet simulated the processes of shape forming/die forging and was accompanied by the development of recovery and recrystallization. This provided the "blurring" of texture and a reduction in the anisotropy of UTS and ductility, but a difference in impact toughness in several directions of fracture was still observed. It is shown that texture evolution during upsetting provided a significant increase in the crack propagation energy. The relationship between microstructure, texture and mechanical properties in different sections of the material under study is discussed.

4.
Materials (Basel) ; 15(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234091

RESUMO

This paper presents a comprehensive study of the effect of the processing by high-pressure torsion (HPT) on the corrosion behavior in Ringer's solution for two popular bioresorbable magnesium alloys-Mg-1Ca and Mg-1Zn-0.2Ca. Three states were studied for each alloy-the initial homogenized state, the as-HPT-processed state and the state after subsequent annealing at 250 and 300 °C. It is shown that HPT processing results in a very strong grain refinement in both alloys down to a mean grain size of about 210 nm for the Mg-1Ca alloy and 90 nm for the Mg-1Zn-0.2Ca alloy, but their corrosion resistance values differ significantly (by an order of magnitude). The conducted precision scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction studies demonstrate that such a difference in the corrosion behavior is conditioned by a difference in the morphology and origin of the nano-sized particles of second phases, as well as by a change in the electrochemical properties of the "particle-α-Mg" pair. The obtained results are discussed from the perspective of the innovative applications of biodegradable Mg alloys for the manufacture of advanced medical implants and products.

5.
Molecules ; 25(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935900

RESUMO

Currently, significant attention is attracted to the problem of the development of the specific architecture and composition of the surface layer in order to control the biocompatibility of implants made of titanium and its alloys. The titanium surface properties can be tuned both by creating an inorganic sublayer with the desired morphology and by organic top coating contributing to bioactivity. In this work, we developed a composite biologically active coatings based on hybrid molecules obtained by chemical cross-linking of amino acid bisphosphonates with a linear tripeptide RGD, in combination with inorganic porous sublayer created on titanium by plasma electrolytic oxidation (PEO). After the addition of organic molecules, the PEO coated surface gets nobler, but corrosion currents increase. In vitro studies on proliferation and viability of fibroblasts, mesenchymal stem cells and osteoblast-like cells showed the significant dependence of the molecule bioactivity on the structure of bisphosphonate anchor and the linker. Several RGD-modified bisphosphonates of ß-alanine, γ-aminobutyric and ε-aminocaproic acids with BMPS or SMCC linkers can be recommended as promising candidates for further in vivo research.


Assuntos
Materiais Revestidos Biocompatíveis , Oligopeptídeos , Ácidos Fosforosos , Próteses e Implantes , Titânio , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Eletroquímica , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/química , Osteoblastos/metabolismo , Ácidos Fosforosos/química , Análise Espectral , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...